Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2561, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142601

RESUMO

Xeroderma pigmentosum (XP) is a genetic disorder caused by mutations in genes of the Nucleotide Excision Repair (NER) pathway (groups A-G) or in Translesion Synthesis DNA polymerase η (V). XP is associated with an increased skin cancer risk, reaching, for some groups, several thousand-fold compared to the general population. Here, we analyze 38 skin cancer genomes from five XP groups. We find that the activity of NER determines heterogeneity of the mutation rates across skin cancer genomes and that transcription-coupled NER extends beyond the gene boundaries reducing the intergenic mutation rate. Mutational profile in XP-V tumors and experiments with POLH knockout cell line reveal the role of polymerase η in the error-free bypass of (i) rare TpG and TpA DNA lesions, (ii) 3' nucleotides in pyrimidine dimers, and (iii) TpT photodimers. Our study unravels the genetic basis of skin cancer risk in XP and provides insights into the mechanisms reducing UV-induced mutagenesis in the general population.


Assuntos
Neoplasias Cutâneas , Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/patologia , Raios Ultravioleta/efeitos adversos , Reparo do DNA/genética , Mutação , Neoplasias Cutâneas/genética , Genômica
2.
Cancer Discov ; 13(5): 1116-1143, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36862804

RESUMO

Metastatic relapse after treatment is the leading cause of cancer mortality, and known resistance mechanisms are missing for most treatments administered to patients. To bridge this gap, we analyze a pan-cancer cohort (META-PRISM) of 1,031 refractory metastatic tumors profiled via whole-exome and transcriptome sequencing. META-PRISM tumors, particularly prostate, bladder, and pancreatic types, displayed the most transformed genomes compared with primary untreated tumors. Standard-of-care resistance biomarkers were identified only in lung and colon cancers-9.6% of META-PRISM tumors, indicating that too few resistance mechanisms have received clinical validation. In contrast, we verified the enrichment of multiple investigational and hypothetical resistance mechanisms in treated compared with nontreated patients, thereby confirming their putative role in treatment resistance. Additionally, we demonstrated that molecular markers improve 6-month survival prediction, particularly in patients with advanced breast cancer. Our analysis establishes the utility of the META-PRISM cohort for investigating resistance mechanisms and performing predictive analyses in cancer. SIGNIFICANCE: This study highlights the paucity of standard-of-care markers that explain treatment resistance and the promise of investigational and hypothetical markers awaiting further validation. It also demonstrates the utility of molecular profiling in advanced-stage cancers, particularly breast cancer, to improve the survival prediction and assess eligibility to phase I clinical trials. This article is highlighted in the In This Issue feature, p. 1027.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Masculino , Humanos , Transcriptoma , Recidiva Local de Neoplasia , Neoplasias da Mama/tratamento farmacológico , Genômica , Perfilação da Expressão Gênica
3.
Clin Cancer Res ; 28(7): 1422-1432, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078858

RESUMO

PURPOSE: Vismodegib is approved for the treatment of locally advanced basal cell carcinoma (laBCC), but some cases demonstrate intrinsic resistance (IR) to the drug. We sought to assess the frequency of IR to vismodegib in laBCC and its underlying genomic mechanisms. EXPERIMENTAL DESIGN: Response to vismodegib was evaluated in a cohort of 148 laBCC patients. Comprehensive genomic and transcriptomic profiling was performed in a subset of five intrinsically resistant BCC (IR-BCC). RESULTS: We identified that IR-BCC represents 6.1% of laBCC in the studied cohort. Prior treatment with chemotherapy was associated with IR. Genetic events that were previously associated with acquired resistance (AR) in BCC or medulloblastoma were observed in three out of five IR-BCC. However, IR-BCCs were distinct by highly rearranged polyploid genomes. Functional analyses identified hyperactivation of the HIPPO-YAP and WNT pathways at RNA and protein levels in IR-BCC. In vitro assay on the BCC cell line further confirmed that YAP1 overexpression increases the cell proliferation rate. CONCLUSIONS: IR to vismodegib is a rare event in laBCC. IR-BCCs frequently harbor resistance mutations in the Hh pathway, but also are characterized by hyperactivation of the HIPPO-YAP and WNT pathways.


Assuntos
Antineoplásicos , Carcinoma Basocelular , Neoplasias Cerebelares , Neoplasias Cutâneas , Anilidas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Neoplasias Cerebelares/tratamento farmacológico , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Piridinas , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
4.
Nat Commun ; 12(1): 2901, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006870

RESUMO

Proliferative chronic myelomonocytic leukemia (pCMML), an aggressive CMML subtype, is associated with dismal outcomes. RAS pathway mutations, mainly NRASG12D, define the pCMML phenotype as demonstrated by our exome sequencing, progenitor colony assays and a Vav-Cre-NrasG12D mouse model. Further, these mutations promote CMML transformation to acute myeloid leukemia. Using a multiomics platform and biochemical and molecular studies we show that in pCMML RAS pathway mutations are associated with a unique gene expression profile enriched in mitotic kinases such as polo-like kinase 1 (PLK1). PLK1 transcript levels are shown to be regulated by an unmutated lysine methyl-transferase (KMT2A) resulting in increased promoter monomethylation of lysine 4 of histone 3. Pharmacologic inhibition of PLK1 in RAS mutant patient-derived xenografts, demonstrates the utility of personalized biomarker-driven therapeutics in pCMML.


Assuntos
Proteínas de Ciclo Celular/genética , GTP Fosfo-Hidrolases/genética , Histona-Lisina N-Metiltransferase/genética , Leucemia Mielomonocítica Crônica/genética , Proteínas de Membrana/genética , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Animais , Proteínas de Ciclo Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Estimativa de Kaplan-Meier , Leucemia Mielomonocítica Crônica/metabolismo , Leucemia Mielomonocítica Crônica/terapia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/genética , Transplante de Células-Tronco/métodos , Transplante Homólogo , Sequenciamento do Exoma/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinase 1 Polo-Like
5.
Nat Commun ; 11(1): 5834, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203900

RESUMO

Recent studies demonstrated a dramatically increased risk of leukemia in patients with a rare genetic disorder, Xeroderma Pigmentosum group C (XP-C), characterized by constitutive deficiency of global genome nucleotide excision repair (GG-NER). The genetic mechanisms of non-skin cancers in XP-C patients remain unexplored. In this study, we analyze a unique collection of internal XP-C tumor genomes including 6 leukemias and 2 sarcomas. We observe a specific mutational pattern and an average of 25-fold increase of mutation rates in XP-C versus sporadic leukemia which we presume leads to its elevated incidence and early appearance. We describe a strong mutational asymmetry with respect to transcription and the direction of replication in XP-C tumors suggesting association of mutagenesis with bulky purine DNA lesions of probably endogenous origin. These findings suggest existence of a balance between formation and repair of bulky DNA lesions by GG-NER in human body cells which is disrupted in XP-C patients.


Assuntos
Neoplasias Hematológicas/genética , Taxa de Mutação , Xeroderma Pigmentoso/genética , Criança , Pré-Escolar , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Humanos , Lactente , Leucemia/genética , Sequenciamento Completo do Genoma , Xeroderma Pigmentoso/patologia
6.
Nature ; 512(7512): 87-90, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25079323

RESUMO

The cis-regulatory effects responsible for cancer development have not been as extensively studied as the perturbations of the protein coding genome in tumorigenesis. To better characterize colorectal cancer (CRC) development we conducted an RNA-sequencing experiment of 103 matched tumour and normal colon mucosa samples from Danish CRC patients, 90 of which were germline-genotyped. By investigating allele-specific expression (ASE) we show that the germline genotypes remain important determinants of allelic gene expression in tumours. Using the changes in ASE in matched pairs of samples we discover 71 genes with excess of somatic cis-regulatory effects in CRC, suggesting a cancer driver role. We correlate genotypes and gene expression to identify expression quantitative trait loci (eQTLs) and find 1,693 and 948 eQTLs in normal samples and tumours, respectively. We estimate that 36% of the tumour eQTLs are exclusive to CRC and show that this specificity is partially driven by increased expression of specific transcription factors and changes in methylation patterns. We show that tumour-specific eQTLs are more enriched for low CRC genome-wide association study (GWAS) P values than shared eQTLs, which suggests that some of the GWAS variants are tumour specific regulatory variants. Importantly, tumour-specific eQTL genes also accumulate more somatic mutations when compared to the shared eQTL genes, raising the possibility that they constitute germline-derived cancer regulatory drivers. Collectively the integration of genome and the transcriptome reveals a substantial number of putative somatic and germline cis-regulatory cancer changes that may have a role in tumorigenesis.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/patologia , Metilação de DNA , Perfilação da Expressão Gênica , Genes Neoplásicos , Estudo de Associação Genômica Ampla , Genótipo , Mutação em Linhagem Germinativa/genética , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Locos de Características Quantitativas/genética , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Transcriptoma/genética
7.
Int J Cancer ; 135(6): 1381-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24347514

RESUMO

Glioblastoma is a deadly malignant brain tumor and one of the most incurable forms of cancer in need of new therapeutic targets. As some cancers are known to be caused by a virus, the discovery of viruses could open the possibility to treat, and perhaps prevent, such a disease. Although an association with viruses such as cytomegalovirus or Simian virus 40 has been strongly suggested, involvement of these and other viruses in the initiation and/or propagation of glioblastoma remains vague, controversial and warrants elucidation. To exhaustively address the association of virus and glioblastoma, we developed and validated a robust metagenomic approach to analyze patient biopsies via high-throughput sequencing, a sensitive tool for virus screening. In addition to traditional clinical diagnostics, glioblastoma biopsies were deep-sequenced and analyzed with a multistage computational pipeline to identify known or potentially discover unknown viruses. In contrast to the studies reporting the presence of viral signatures in glioblastoma, no common or recurring active viruses were detected, despite finding an antiviral-like type I interferon response in some specimens. Our findings highlight a discrete and non-specific viral signature and uncharacterized short RNA sequences in glioblastoma. This study provides new insights into glioblastoma pathogenesis and defines a general methodology that can be used for high-resolution virus screening and discovery in human cancers.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/virologia , Citomegalovirus/imunologia , Glioblastoma/genética , Glioblastoma/virologia , Interferon Tipo I/imunologia , Anticorpos Antivirais/sangue , Neoplasias Encefálicas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA