Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 8: 741249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646852

RESUMO

Recent studies have shown an association between iron homeostasis, obesity and diabetes. In this work, we investigated the differences in the metabolic status and inflammation in liver, pancreas and visceral adipose tissue of leptin receptor-deficient db/db mice dependent on high iron concentration diet. 3-month-old male BKS-Leprdb/db/JOrlRj (db/db) mice were divided into two groups, which were fed with different diets containing high iron (29 g/kg, n = 57) or standard iron (0.178 g/kg; n = 42) concentrations for 4 months. As anticipated, standard iron-fed db/db mice developed obesity and diabetes. However, high iron-fed mice exhibited a wide heterogeneity. By dividing into two subgroups at the diabetes level, non-diabetic subgroup 1 (<13.5 mmol/l, n = 30) significantly differed from diabetic subgroup two (>13.5 mmol/l, n = 27). Blood glucose concentration, HbA1c value, inflammation markers interleukin six and tumor necrosis factor α and heme oxygenase one in visceral adipose tissue were reduced in subgroup one compared to subgroup two. In contrast, body weight, C-peptide, serum insulin and serum iron concentrations, pancreatic islet and signal ratio as well as cholesterol, LDL and HDL levels were enhanced in subgroup one. While these significant differences require further studies and explanation, our results might also explain the often-contradictory results of the metabolic studies with db/db mice.

2.
Horm Metab Res ; 52(9): 685-688, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32252105

RESUMO

Cartilage oligomeric matrix protein (COMP)-Angiopoietin-1 is a potent angiopoietin-1 (Ang-1) variant that possesses therapeutic potential in angiogenesis and vascular endothelial dysfunction. Noteworthy, we have shown that COMP-Ang-1 improves hyperglycemia and neuroregeneration in ob/ob mice. However, the mechanism of the antidiabetic effect of COMP-Ang-1 is completely unknown. Therefore, we elucidated the diabetes protective molecular mechanisms of COMP-Ang-1 in diabetic db/db mouse model. COMP-Ang-1 (0.5 ng/g body weight) or aqueous NaCl solution was injected intraperitoneally per day in 21 consecutive days into 3-month old, male db/db mice (n=10 per group). Blood glucose and HbA1c levels were determined at baseline and 21 days after COMP-Ang-1 or NaCl treatment. The effect of COMP-Ang-1 on glucose uptake was investigated by euglycemic-hyperinsulinemic clamp studies and key genes of glucose metabolism were studied by Western blot analysis. Our findings indicate that COMP-Ang-1 improves glucose metabolism in a tissue specific manner by regulating HIF-1α transcriptional genes of GLUT-1 expression.


Assuntos
Angiopoietina-1/administração & dosagem , Biomarcadores/análise , Glicemia/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/administração & dosagem , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Transportador de Glucose Tipo 1/metabolismo , Hemoglobinas Glicadas/análise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Especificidade de Órgãos
3.
Neuroscience ; 406: 496-509, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30867132

RESUMO

Peripheral diabetic neuropathy (PDN) is one of the most common complications of diabetes mellitus. Previous studies showed an association between dietary iron load and inflammation in the development of PDN in a rat model of type 1 diabetes (T1D). Here we investigated the role of iron and neural inflammation in development of PDN in a animal model of obesity and type 2 diabetes (T2D). 3-month-old db/db mice were fed with a high, standard or low iron diet for 4 months. High iron chow lead to a significant increase in motor nerve conduction velocities compared to mice on standard and low iron chow. Direct beneficiary effects on lowering blood glucose and HbA1c concentrations were shown in the high iron treated diabetic mice. Numbers of pro-inflammatory M1 macrophages were reduced in nerve sections, and anti-inflammatory M2 macrophages were increased in db/db mice on high iron diet compared to other groups. These results confirm and extend our previous findings in STZ-diabetic rats by showing that dietary non-hem iron supplementation may partly prevent the development of PDN in opposition to iron restriction. The identification of these dietary iron effects on the metabolic and inflammatory mechanisms of PDN supports a role of dietary iron and leads us to suggest testing for iron levels in human diabetic patients.


Assuntos
Neuropatias Diabéticas/fisiopatologia , Inflamação/metabolismo , Ferro/metabolismo , Fibras Nervosas/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Inflamação/fisiopatologia , Ferro da Dieta/metabolismo , Masculino , Camundongos Transgênicos , Obesidade/fisiopatologia , Nervo Isquiático/metabolismo
4.
Neurol Res ; 41(4): 341-353, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30638160

RESUMO

INTRODUCTION: Here, we investigated inflammatory signs of peripheral nerves in leptin-deficient obese ob/ob mice and the modulating effects of the exogenous iron load. METHODS: Ob/ob and ob/+ control mice were fed with high, standard, or low iron diet for four months. RESULTS: We found intraepidermal nerve fiber degeneration in foot skin and low-grade neuropathic abnormalities including mildly slowed motor and compound sensory nerve conduction velocities and low-grade macrophage and T-cell infiltration without overt neuropathology in sciatic nerves of all ob/ob mice. Low dietary iron load caused more pronounced abnormalities than high iron load in ob/ob mice. DISCUSSION: Our data suggest that dietary non-heme iron deficiency may be a modulating factor in the pathogenesis of peripheral neuropathy in obese ob/ob mice with metabolic syndrome. Once the mechanisms can be further elucidated, how low dietary iron augments peripheral nerve degeneration and dysfunction via pro-inflammatory pathways and new therapeutic strategies could be developed. ABBREVIATIONS: CMAP: compound muscle action potential; cSNCV: compound sensory nerve conduction velocity; IENFD: intraepidermal nerve fiber density; LDL: low-density lipoprotein; MetS: metabolic syndrome; MNCV: motor conduction velocity; NCV: nerve conduction velocity; PN: peripheral neuropathy; PNS: peripheral nervous system; STZ: streptozotocin; T2D: type 2 diabetes mellitus; TNF alpha: tumor necrosis factor alpha; WHO: World Health Organization.


Assuntos
Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/dietoterapia , Ferro da Dieta/uso terapêutico , Leptina/deficiência , Inflamação Neurogênica/etiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Leptina/genética , Masculino , Camundongos , Camundongos Mutantes , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Transmissão , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/genética , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Pele/inervação , Pele/patologia
5.
Metabolism ; 65(4): 391-405, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26975531

RESUMO

BACKGROUND: Iron is an essential but potentially toxic metal in mammals. Here we investigated a pathogenic role of exogenous iron in peripheral diabetic neuropathy (PDN) in an animal model for type 1 diabetes. METHODS: Diabetes was induced by a single injection of streptozotocin (STZ) in 4-month-old Sprague-Dawley rats. STZ-diabetic rats and non-diabetic rats were fed with high, standard, or low iron diet. After three months of feeding, animals were tested. RESULTS: STZ-rats on standard iron diet showed overt diabetes, slowed motor nerve conduction, marked degeneration of distal intraepidermal nerve fibers, mild intraneural infiltration with macrophages and T-cells in the sciatic nerve, and increased iron levels in serum and dorsal root ganglion (DRG) neurons. While motor fibers were afflicted in all STZ-groups, only a low iron-diet led also to reduced sensory conduction velocities in the sciatic nerve. In addition, only STZ-rats on a low iron diet showed damaged mitochondria in numerous DRG neurons, a more profound intraepidermal nerve fiber degeneration indicating small fiber neuropathy, and even more inflammatory cells in sciatic nerves than seen in any other experimental group. CONCLUSIONS: These results indicate that dietary iron-deficiency rather than iron overload, and mild inflammation may both promote neuropathy in STZ-induced experimental PDN.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/patologia , Ferro da Dieta/toxicidade , Neurite (Inflamação)/induzido quimicamente , Neurite (Inflamação)/patologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Dieta , Gânglios Espinais/patologia , Ferro/sangue , Masculino , Fibras Nervosas/patologia , Condução Nervosa/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA