Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 546(7659): 554-558, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28614300

RESUMO

In response to environmental cues that promote IP3 (inositol 1,4,5-trisphosphate) generation, IP3 receptors (IP3Rs) located on the endoplasmic reticulum allow the 'quasisynaptical' feeding of calcium to the mitochondria to promote oxidative phosphorylation. However, persistent Ca2+ release results in mitochondrial Ca2+ overload and consequent apoptosis. Among the three mammalian IP3Rs, IP3R3 appears to be the major player in Ca2+-dependent apoptosis. Here we show that the F-box protein FBXL2 (the receptor subunit of one of 69 human SCF (SKP1, CUL1, F-box protein) ubiquitin ligase complexes) binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria. FBXL2-knockdown cells and FBXL2-insensitive IP3R3 mutant knock-in clones display increased cytosolic Ca2+ release from the endoplasmic reticulum and sensitization to Ca2+-dependent apoptotic stimuli. The phosphatase and tensin homologue (PTEN) gene is frequently mutated or lost in human tumours and syndromes that predispose individuals to cancer. We found that PTEN competes with FBXL2 for IP3R3 binding, and the FBXL2-dependent degradation of IP3R3 is accelerated in Pten-/- mouse embryonic fibroblasts and PTEN-null cancer cells. Reconstitution of PTEN-null cells with either wild-type PTEN or a catalytically dead mutant stabilizes IP3R3 and induces persistent Ca2+ mobilization and apoptosis. IP3R3 and PTEN protein levels directly correlate in human prostate cancer. Both in cell culture and xenograft models, a non-degradable IP3R3 mutant sensitizes tumour cells with low or no PTEN expression to photodynamic therapy, which is based on the ability of photosensitizer drugs to cause Ca2+-dependent cytotoxicity after irradiation with visible light. Similarly, disruption of FBXL2 localization with GGTi-2418, a geranylgeranyl transferase inhibitor, sensitizes xenotransplanted tumours to photodynamic therapy. In summary, we identify a novel molecular mechanism that limits mitochondrial Ca2+ overload to prevent cell death. Notably, we provide proof-of-principle that inhibiting IP3R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.


Assuntos
Apoptose , Cálcio/metabolismo , Proteínas F-Box/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Ligação Competitiva , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fibroblastos , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/deficiência , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Mutação , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fotoquimioterapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nat Cell Biol ; 17(1): 31-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25503564

RESUMO

An intercentrosomal linker keeps a cell's two centrosomes joined together until it is dissolved at the onset of mitosis. A second connection keeps daughter centrioles engaged to their mothers until they lose their orthogonal arrangement at the end of mitosis. Centriole disengagement is required to license centrioles for duplication. We show that the intercentrosomal linker protein Cep68 is degraded in prometaphase through the SCF(ßTrCP) (Skp1-Cul1-F-box protein) ubiquitin ligase complex. Cep68 degradation is initiated by PLK1 phosphorylation of Cep68 on Ser 332, allowing recognition by ßTrCP. We also found that Cep68 forms a complex with Cep215 (also known as Cdk5Rap2) and PCNT (also known as pericentrin), two PCM (pericentriolar material) proteins involved in centriole engagement. Cep68 and PCNT bind to different pools of Cep215. We propose that Cep68 degradation allows Cep215 removal from the peripheral PCM preventing centriole separation following disengagement, whereas PCNT cleavage mediates Cep215 removal from the core of the PCM to inhibit centriole disengagement and duplication.


Assuntos
Antígenos/metabolismo , Centríolos/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteólise , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Metáfase/genética , Fosforilação , Prometáfase/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas Ligases SKP Culina F-Box/genética , Quinase 1 Polo-Like
3.
Nat Rev Drug Discov ; 13(12): 889-903, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394868

RESUMO

The clinical successes of proteasome inhibitors for the treatment of cancer have highlighted the therapeutic potential of targeting this protein degradation system. However, proteasome inhibitors prevent the degradation of numerous proteins, which may cause adverse effects. Increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a multitude of processes at the cellular and organismal levels, and their dysregulation is implicated in many pathologies. SCF ubiquitin ligases are characterized by their high specificity for substrates, and these ligases therefore represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This Review explores and discusses potential strategies to target SCF-mediated biological processes to treat human diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Proteínas F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Proteínas F-Box/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica/fisiologia , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores
4.
Nature ; 481(7379): 90-3, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22113614

RESUMO

BCL6 is the product of a proto-oncogene implicated in the pathogenesis of human B-cell lymphomas. By binding specific DNA sequences, BCL6 controls the transcription of a variety of genes involved in B-cell development, differentiation and activation. BCL6 is overexpressed in the majority of patients with aggressive diffuse large B-cell lymphoma (DLBCL), the most common lymphoma in adulthood, and transgenic mice constitutively expressing BCL6 in B cells develop DLBCLs similar to the human disease. In many DLBCL patients, BCL6 overexpression is achieved through translocation (~40%) or hypermutation of its promoter (~15%). However, many other DLBCLs overexpress BCL6 through an unknown mechanism. Here we show that BCL6 is targeted for ubiquitylation and proteasomal degradation by a SKP1­CUL1­F-box protein (SCF) ubiquitin ligase complex that contains the orphan F-box protein FBXO11 (refs 5, 6). The gene encoding FBXO11 was found to be deleted or mutated in multiple DLBCL cell lines, and this inactivation of FBXO11 correlated with increased levels and stability of BCL6. Similarly, FBXO11 was either deleted or mutated in primary DLBCLs. Notably, tumour-derived FBXO11 mutants displayed an impaired ability to induce BCL6 degradation. Reconstitution of FBXO11 expression in FBXO11-deleted DLBCL cells promoted BCL6 ubiquitylation and degradation, inhibited cell proliferation, and induced cell death. FBXO11-deleted DLBCL cells generated tumours in immunodeficient mice, and the tumorigenicity was suppressed by FBXO11 reconstitution. We reveal a molecular mechanism controlling BCL6 stability and propose that mutations and deletions in FBXO11 contribute to lymphomagenesis through BCL6 stabilization. The deletions/mutations found in DLBCLs are largely monoallelic, indicating that FBXO11 is a haplo-insufficient tumour suppressor gene.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Mutação/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteólise , Alelos , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Deleção de Genes , Genes Supressores de Tumor , Células HEK293 , Humanos , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Transplante de Neoplasias , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteína-Arginina N-Metiltransferases/deficiência , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitinação
5.
Cell Cycle ; 9(5): 971-4, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20160477

RESUMO

F-box proteins are the substrate recognition subunits of SCF (Skp1, Cul1, F-box protein) ubiquitin ligase complexes. Skp2 is a nuclear F-box protein that targets the CDK inhibitor p27 for ubiquitin- and proteasome-dependent degradation. In G(0) and during the G(1) phase of the cell cycle, Skp2 is degraded via the APC/C(Cdh1) ubiquitin ligase to allow stabilization of p27 and inhibition of CDKs, facilitating the maintenance of the G(0)/G(1) state. APC/C(Cdh1) binds Skp2 through an N-terminal domain (amino acids 46-94 in human Skp2). It has been shown that phosphorylation of Ser64 and Ser72 in this domain dissociates Skp2 from APC/C. More recently, it has instead been proposed that phosphorylation of Skp2 on Ser72 by Akt/PKB allows Skp2 binding to Skp1, promoting the assembly of an active SCF(Skp2) ubiquitin ligase, and Skp2 relocalization/retention into the cytoplasm, promoting cell migration via an unknown mechanism. According to these reports, a Skp2 mutant in which Ser72 is substituted with Ala is unable to promote cell proliferation and loses its oncogenic potential. Given the contrasting reports, we revisited these results and conclude that phosphorylation of Skp2 on Ser72 does not control Skp2 binding to Skp1 and Cul1, has no influence on SCF(Skp2) ubiquitin ligase activity, and does not affect the subcellular localization of Skp2.


Assuntos
Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Serina/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Linhagem Celular , Proteínas Culina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1 , Humanos , Mutação , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase de Repouso do Ciclo Celular , Proteínas Quinases Associadas a Fase S/análise , Proteínas Quinases Associadas a Fase S/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
6.
Cell Cycle ; 8(14): 2198-210, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19502790

RESUMO

Chromosomes in PTEN deficient cells display both numerical as well as structural alterations including regional amplification. We found that PTEN deficient cells displayed a normal DNA damage response (DDR) as evidenced by the ionizing radiation (IR)-induced phosphorylation of Ataxia Telangiectasia Mutated (ATM) as well as its effectors. PTEN deficient cells also had no defect in Rad51 expression or DNA damage repair kinetics post irradiation. In contrast, caffeine treatment specifically increased IR-induced chromosome aberrations and mitotic index only in cells with PTEN, and not in cells deficient for PTEN, suggesting that their checkpoints were defective. Furthermore, PTEN-deficient cells were unable to maintain active spindle checkpoint after taxol treatment. Genomic instability in PTEN deficient cells could not be attributed to lack of PTEN at centromeres, since no interaction was detected between centromeric DNA and PTEN in wild type cells. These results indicate that PTEN deficiency alters multiple cell cycle checkpoints possibly leaving less time for DNA damage repair and/or chromosome segregation as evidenced by the increased structural as well as numerical alterations seen in PTEN deficient cells.


Assuntos
Ciclo Celular , Reparo do DNA , Instabilidade Genômica , PTEN Fosfo-Hidrolase/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Cafeína/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Humanos , Raios Infravermelhos , Cariotipagem , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Paclitaxel/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Rad51 Recombinase/metabolismo , Telômero/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
J Biol Chem ; 282(20): 15248-57, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17379597

RESUMO

Corepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR. When tethered to a heterologous promoter, BCoR-L1 is capable of strong repression. Like other corepressors, BCoR-L1 associates with histone deacetylase (HDAC) activity. Specifically, BCoR-L1 coprecipitates with the Class II HDACs, HDAC4, HDAC5, and HDAC7, suggesting that they are involved in its role as a transcriptional repressor. BCoR-L1 also interacts with the CtBP corepressor through a CtBP-interacting motif in its amino terminus. Abrogation of the CtBP binding site within BCoR-L1 partially relieves BCoR-L1-mediated transcriptional repression. Furthermore, BCoR-L1 is located on the E-cadherin promoter, a known CtBP-regulated promoter, and represses the E-cadherin promoter activity in a reporter assay. The inhibition of BCoR-L1 expression by RNA-mediated interference results in derepression of E-cadherin in cells that do not normally express E-cadherin, indicating that BCoR-L1 contributes to the repression of an authentic endogenous CtBP target.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Repressoras/metabolismo , Oxirredutases do Álcool/genética , Motivos de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Caderinas/biossíntese , Caderinas/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Interferência de RNA , Proteínas Repressoras/genética
8.
J Biol Chem ; 281(17): 11949-54, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16513632

RESUMO

Lipopolysaccharide-activated macrophages rapidly synthesize and secrete tumor necrosis factor alpha (TNFalpha) to prime the immune system. Surface delivery of membrane carrying newly synthesized TNFalpha is controlled and limited by the level of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 4 and SNAP-23. Many functions in immune cells are coordinated from lipid rafts in the plasma membrane, and we investigated a possible role for lipid rafts in TNFalpha trafficking and secretion. TNFalpha surface delivery and secretion were found to be cholesterol-dependent. Upon macrophage activation, syntaxin 4 was recruited to cholesterol-dependent lipid rafts, whereas its regulatory protein, Munc18c, was excluded from the rafts. Syntaxin 4 in activated macrophages localized to discrete cholesterol-dependent puncta on the plasma membrane, particularly on filopodia. Imaging the early stages of TNFalpha surface distribution revealed these puncta to be the initial points of TNFalpha delivery. During the early stages of phagocytosis, syntaxin 4 was recruited to the phagocytic cup in a cholesterol-dependent manner. Insertion of VAMP3-positive recycling endosome membrane is required for efficient ingestion of a pathogen. Without this recruitment of syntaxin 4, it is not incorporated into the plasma membrane, and phagocytosis is greatly reduced. Thus, relocation of syntaxin 4 into lipid rafts in macrophages is a critical and rate-limiting step in initiating an effective immune response.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana , Fagocitose , Proteínas Qa-SNARE/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Membrana Celular/metabolismo , Ativação de Macrófagos , Camundongos , Proteínas Munc18/metabolismo , Transporte Proteico , Pseudópodes/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo
9.
Curr Biol ; 13(2): 156-60, 2003 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-12546791

RESUMO

Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response. TNFalpha plays a key role in inflammatory disease; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that, in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.


Assuntos
Citocinas/metabolismo , Ativação de Macrófagos/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Transporte Vesicular , Animais , Linhagem Celular , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Proteínas Qa-SNARE , Proteínas SNARE , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA