Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(4): 564-579, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36694432

RESUMO

BACKGROUND AND PURPOSE: Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH: Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS: Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS: Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , NAD , Humanos , Simulação de Acoplamento Molecular , NAD/metabolismo , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Agregação Plaquetária , Inflamação/metabolismo , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
2.
Respir Res ; 24(1): 194, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37517999

RESUMO

BACKGROUND: Oxidative stress and persistent airway inflammation are thought to be important contributors to the development of chronic obstructive pulmonary disease (COPD). This review summarizes the evidence for targeting oxidative stress and inflammation in patients with COPD with mucolytic/antioxidant thiols and inhaled corticosteroids (ICS), either alone or in combination. MAIN BODY: Oxidative stress is increased in COPD, particularly during acute exacerbations. It can be triggered by oxidant air pollutants and cigarette smoke and/or by endogenous reactive oxygen species (ROS) released from mitochondria and activated inflammatory, immune and epithelial cells in the airways, together with a reduction in endogenous antioxidants such as glutathione (GSH). Oxidative stress also drives chronic inflammation and disease progression in the airways by activating intracellular signalling pathways and the release of further inflammatory mediators. ICS are anti-inflammatory agents currently recommended for use with long-acting bronchodilators to prevent exacerbations in patients with moderate-to-severe COPD, especially those with eosinophilic airway inflammation. However, corticosteroids can also increase oxidative stress, which may in turn reduce corticosteroid sensitivity in patients by several mechanisms. Thiol-based agents such as erdosteine, N-acetyl L-cysteine (NAC) and S-carboxymethylcysteine (S-CMC) are mucolytic agents that also act as antioxidants. These agents may reduce oxidative stress directly through the free sulfhydryl groups, serving as a source of reducing equivalents and indirectly though intracellular GSH replenishment. Few studies have compared the effects of corticosteroids and thiol agents on oxidative stress, but there is some evidence for greater antioxidant effects when they are administered together. The current Global Initiative for Chronic Obstructive Lung Disease (GOLD) report supports treatment with antioxidants (erdosteine, NAC, S-CMC) in addition to standard-of-care therapy as they have been demonstrated to reduce COPD exacerbations. However, such studies have demonstrated that NAC and S-CMC reduced the exacerbation risk only in patients not treated with ICS, whereas erdosteine reduced COPD exacerbations irrespective of concomitant ICS use suggesting that erdosteine has additional pharmacological actions to ICS. CONCLUSIONS: Further clinical trials of antioxidant agents with and without ICS are needed to better understand the place of thiol-based drugs in the treatment of patients with COPD.


Assuntos
Antioxidantes , Doença Pulmonar Obstrutiva Crônica , Humanos , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Compostos de Sulfidrila/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Corticosteroides , Estresse Oxidativo , Acetilcisteína/uso terapêutico , Inflamação/tratamento farmacológico , Expectorantes/uso terapêutico
3.
Shock ; 60(2): 172-180, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405876

RESUMO

ABSTRACT: Key underlying pathological mechanisms contributing to sepsis are hemostatic dysfunction and overwhelming inflammation. Platelet aggregation is required for hemostasis, and platelets are also separately involved in inflammatory responses that require different functional attributes. Nevertheless, P2Y receptor activation of platelets is required for this dichotomy of function. The aim of this study was to elucidate whether P2YR-dependent hemostatic and inflammatory functions were altered in platelets isolated from sepsis patients, compared with patients with mild sterile inflammation. Platelets from patients undergoing elective cardiac surgery (20 patients, 3 female) or experiencing sepsis after community-acquired pneumonia (10 patients, 4 female) were obtained through the IMMunE dysfunction and Recovery from SEpsis-related critical illness in adults (IMMERSE) Observational Clinical Trial. In vitro aggregation and chemotaxis assays were performed with platelets after stimulation with ADP and compared with platelets isolated from healthy control subjects (7 donors, 5 female). Cardiac surgery and sepsis both induced a robust inflammatory response with increases in circulating neutrophil counts with a trend toward decreased circulating platelet counts being observed. The ability of platelets to aggregate in response to ex vivo ADP stimulation was preserved in all groups. However, platelets isolated from patients with sepsis lost the ability to undergo chemotaxis toward N -formylmethionyl-leucyl-phenylalanine, and this suppression was evident at admission through to and including discharge from hospital. Our results suggest that P2Y 1 -dependent inflammatory function in platelets is lost in patients with sepsis resulting from community-acquired pneumonia. Further studies will need to be undertaken to determine whether this is due to localized recruitment to the lungs of a platelet responsive population or loss of function as a result of dysregulation of the immune response.


Assuntos
Hemostáticos , Pneumonia , Sepse , Adulto , Humanos , Feminino , Plaquetas/fisiologia , Agregação Plaquetária/fisiologia , Hemostáticos/farmacologia , Inflamação
4.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L803-L813, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431396

RESUMO

Chaperonin 60.1 (Cpn60.1) is a protein derived from Mycobacterium tuberculosis that has been shown, along with its peptide fragment IRL201104, to have beneficial effects in models of allergic inflammation. To further investigate the anti-inflammatory properties of Cpn60.1 and IRL201104, we have investigated these molecules in a model of nonallergic lung inflammation. Mice were treated with Cpn60.1 (0.5-5,000 ng/kg) or IRL201104 (0.00025-2.5 ng/kg), immediately before intranasal instillation of bacterial lipopolysaccharide (LPS). Cytokine levels and cell numbers in mouse bronchoalveolar lavage (BAL) fluid were measured 4 h after LPS administration. In some experiments, mice were depleted of lung-resident phagocytes. Cells from BAL fluid were analyzed for inflammasome function. Human umbilical vein endothelial cells (HUVECs) were analyzed for adhesion molecule expression. Human neutrophils were analyzed for integrin expression, chemotaxis, and cell polarization. Cpn60.1 and IRL201104 significantly inhibited neutrophil migration into the airways, independently of route of administration. This effect of the peptide was absent in TLR4 and annexin A1 knockout mice. Intravital microscopy revealed that IRL201104 reduced leukocyte adhesion and migration into inflamed tissues. However, IRL201104 did not significantly affect adhesion molecule expression in HUVECs or integrin expression, chemotaxis, or polarization of human neutrophils at the studied concentrations. In phagocyte-depleted animals, the anti-inflammatory effect of IRL201104 was not significant. IRL201104 significantly reduced IL-1ß and NLRP3 expression and increased A20 expression in BAL cells. This study shows that Cpn60.1 and IRL201104 potently inhibit LPS-induced neutrophil infiltration in mouse lungs by a mechanism dependent on tissue-resident phagocytes and to a much lesser extent, the proresolving factor annexin A1.


Assuntos
Anti-Inflamatórios/farmacologia , Chaperonina 60/farmacologia , Chaperoninas/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Pneumonia/prevenção & controle , Animais , Anexina A1/genética , Líquido da Lavagem Broncoalveolar/química , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrinas/biossíntese , Interleucina-1beta/biossíntese , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Neutrófilos/imunologia , Receptor 4 Toll-Like/genética
5.
Am J Respir Cell Mol Biol ; 64(5): 557-568, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556295

RESUMO

Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.


Assuntos
Asma/imunologia , Plaquetas/imunologia , Hiper-Reatividade Brônquica/imunologia , Pulmão/imunologia , Ativação Plaquetária/imunologia , Receptores CCR3/imunologia , Adolescente , Adulto , Idoso , Alérgenos/administração & dosagem , Animais , Antígenos de Dermatophagoides/administração & dosagem , Proteínas de Artrópodes/administração & dosagem , Asma/genética , Asma/mortalidade , Asma/patologia , Plaquetas/efeitos dos fármacos , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/patologia , Criança , Cisteína Endopeptidases/administração & dosagem , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Ativação Plaquetária/efeitos dos fármacos , Pyroglyphidae/química , Pyroglyphidae/imunologia , Receptores CCR3/genética , Receptores CCR4/genética , Receptores CCR4/imunologia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Transdução de Sinais , Análise de Sobrevida
6.
ALTEX ; 37(4): 545-560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32449787

RESUMO

Azithromycin (AZM) is a broad-spectrum antibiotic widely used to treat infections. AZM also has been shown to have anti-inflammatory and immunomodulatory functions unrelated to its antibacterial activity that contribute to the effectiveness of this drug in chronic respiratory diseases. The mechanisms behind these beneficial effects are not yet fully elucidated. We have previously shown that AZM enhances barrier integrity of bronchial epithelial cells and directs them towards epidermal differentiation. In this study, we analyzed the effect of AZM pre-treatment of human bronchial and alveolar derived cell lines on mechanical stress in a cyclical pressure air-liquid interface device (CPAD) that models the disruption of the epithelial barrier with increased inflammatory response in lung tissue, which is associated with ventilator-induced lung injury (VILI). Immunostaining and electron microscopy showed that barrier integrity of the epithelium was compromised by cyclically stressing the cells but maintained when cells had been pre-treated with AZM. Lamellar body formation was revealed in AZM pre-treated cells, possibly further supporting the barrier-enhancing effects. RNA sequencing showed that the inflammatory response was attenuated by AZM treatment before cyclical stress. YKL-40, an emerging inflammatory marker, increased both due to cyclical stress and upon AZM treatment. These data confirm the usefulness of the CPAD to model ventilator-induced lung injury and suggest that AZM has barrier protective and immunomodulatory effects, attenuating the inflammatory response during mechanical stress, and might therefore be lung protective during mechanical ventilation. The model could be used to assess further drug candidates that influence barrier integrity and modulate inflammatory response.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/citologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Alternativas aos Testes com Animais , Diferenciação Celular , Linhagem Celular , Humanos
7.
Clin Exp Allergy ; 50(4): 508-519, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31845415

RESUMO

BACKGROUND: We have previously demonstrated that Mycobacteria tuberculosis chaperonin 60.1 inhibits leucocyte diapedesis and bronchial hyperresponsiveness in a murine model of allergic lung inflammation. METHODS: In the present study, we have investigated the effect of a shorter peptide sequence derived from Cpn 60.1, named IRL201104, on allergic lung inflammation induced by ovalbumin (OVA) in mice and by house dust mite (HDM) in guinea pigs, as well as investigating the action of IRL201104 on human cells in vitro. RESULTS: Pre-treatment of mice or guinea pigs with IRL201104 inhibits the infiltration of eosinophils to the lung, cytokine release, and in guinea pig skin, inhibits allergen-induced vascular permeability. The protective effect of intranasal IRL201104 against OVA-induced eosinophilia persisted for up to 20 days post-treatment. Moreover, OVA-sensitized mice treated intranasally with 20 ng/kg of IRL201104 show a significant increase in the expression of the anti-inflammatory molecule ubiquitin A20 and significant inhibition of the activation of NF-κB in lung tissue. Our results also show that A20 expression was significantly reduced in blood leucocytes and ASM obtained from patients with asthma compared to cells obtained from healthy subjects which were restored after incubation with IRL201104 in vitro, when added alone, or in combination with LPS or TNF-α in ASM. CONCLUSIONS: Our results suggest that a peptide derived from mycobacterial Cpn60.1 has a long-lasting anti-inflammatory and immunomodulatory activity which may help explain some of the protective effects of TB against allergic diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Asma/imunologia , Proteínas de Bactérias/farmacologia , Chaperonina 60/farmacologia , Mycobacterium tuberculosis/química , Peptídeos/farmacologia , Animais , Anti-Inflamatórios/química , Asma/tratamento farmacológico , Asma/patologia , Proteínas de Bactérias/química , Líquido da Lavagem Broncoalveolar , Chaperonina 60/química , Eosinófilos/imunologia , Eosinófilos/patologia , Feminino , Cobaias , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química
8.
Eur J Pharmacol ; 827: 58-70, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29534999

RESUMO

Platelet P2Y1 receptor signalling via RhoGTPases is necessary for platelet-dependent leukocyte recruitment, where no platelet aggregation is observed. We investigated signalling cascades involved in distinct P2Y1-dependent platelet activities in vitro, using specific inhibitors for phospholipase C (PLC) (U73122, to inhibit the canonical pathway), and RhoGTPases: Rac1 (NSC23766) and RhoA (ROCK inhibitor GSK429286). Human platelet rich plasma (for platelet aggregation) or isolated washed platelets (for chemotaxis assays) was treated with U73122, GSK429286 or NSC23766 prior to stimulation with adenosine diphosphate (ADP) or the P2Y1 specific agonist MRS2365. Aggregation, chemotaxis (towards f-MLP), or platelet-induced human neutrophil chemotaxis (PINC) towards macrophage derived chemokine (MDC) was assessed. Molecular docking of ADP and MRS2365 to P2Y1 was analysed using AutoDock Smina followed by GOLD molecular docking in the Accelrys Discovery Studio software. Inhibition of PLC, but not Rac1 or RhoA, suppressed platelet aggregation induced by ADP and MRS2365. In contrast, platelet chemotaxis and PINC, were significantly attenuated by inhibition of platelet Rac1 or RhoA, but not PLC. MRS2365, compared to ADP had a less pronounced effect on P2Y1-induced aggregation, but a similar efficacy to stimulate platelet chemotaxis and PINC, which might be explained by differences in molecular interaction of ADP compared to MRS2365 with the P2Y1 receptor. Platelet P2Y1 receptor activation during inflammation signals through alternate pathways involving Rho GTPases in contrast to canonical P2Y1 receptor induced PLC signalling. This might be explained by selective molecular interactions of ligands within the orthosteric site of the P2Y1 receptor.


Assuntos
Plaquetas/fisiologia , Receptores Purinérgicos P2Y1/metabolismo , Transdução de Sinais , Difosfato de Adenosina/farmacologia , Plaquetas/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Agregação Plaquetária/efeitos dos fármacos , Conformação Proteica , Receptores Purinérgicos P2Y1/química , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Pulm Pharmacol Ther ; 49: 27-35, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29331645

RESUMO

Inhaled airway challenges provoke bronchoconstriction in susceptible subjects and are a pivotal tool in the diagnosis and monitoring of obstructive lung diseases, both in the clinic and in the development of new respiratory medicines. This article reviews the main challenge agents that are in use today (methacholine, mannitol, adenosine, allergens, endotoxin) and emphasises the importance of controlling how these agents are administered. There is a danger that the optimal value of these challenge agents may not be realised due to suboptimal inhaled delivery; thus considerations for effective and reproducible challenge delivery are provided. This article seeks to increase awareness of the importance of precise delivery of inhaled agents used to challenge the airways for diagnosis and research, and is intended as a stepping stone towards much-needed standardisation and harmonisation in the administration of inhaled airway challenge agents.


Assuntos
Testes de Provocação Brônquica/métodos , Broncoconstritores/administração & dosagem , Pneumopatias Obstrutivas/diagnóstico , Administração por Inalação , Broncoconstrição/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Pulmão/metabolismo , Reprodutibilidade dos Testes , Distribuição Tecidual
10.
Pulm Pharmacol Ther ; 48: 88-96, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28986203

RESUMO

BACKGROUND: COPD is an inflammatory airway disease characterised by progressive airflow limitation and air trapping, leading to lung hyperinflation and exercise limitation. Acute worsening of symptoms, including dyspnea, cough and sputum production, occurs during exacerbations which are associated with significantly reduced health related quality of life, and increased morbidity and mortality. Chronic bronchial mucus production and productive cough are risk factors for exacerbations. Medicines targeting bronchoconstriction and airway inflammation are the current mainstays of COPD therapy. However, there is growing concern with an increased risk of pneumonia in patients with COPD receiving regular inhaled corticosteroids and there is therefore a need to find safer alternative treatments. Previous studies have indicated that inhalation of unfractionated heparin (UFH) treats local inflammation, mucus hypersecretion and lung injury, without systemic anticoagulation, and is safe. Therefore, our primary objective was to demonstrate that inhaled UFH significantly improves lung function (FEV1) over 21 days of treatment in patients with COPD receiving pulmonary rehabilitation and that UFH provides a novel, safe and effective way of treating this complex disease. METHODS: Forty patients with moderate to very severe COPD admitted to the IRCCS San Raffaele Pisana Hospital for 21 days pulmonary rehabilitation were randomised to receive nebulised inhaled UFH (75,000 or 150,000 IU BID) or placebo for 21 days. All patients also received nebulised salbutamol (1 mg) and beclomethasone dipropionate (400 µg) BID over the same period. Lung function was measured at day 0, 7, 14 and 21 of treatment and at a follow-up visit 7 days post-treatment. Exercise capacity (6MWT) and dyspnoea (Borg score) were measured before and after treatment. In pre-clinical studies, the ability of basic proteins found in COPD sputum to neutralise the anticoagulant activity of heparin was determined using the AMAX heparin assay kit. MAIN RESULTS: At both doses, UFH significantly increased FVC following 7 days of treatment and 150,000 IU BID significantly increased FEV1 (+249 ± 69 ml compared with placebo) at this time, an effect maintained to the 28 day follow-up. Clinically significant improvement in exercise capacity and dyspnoea were seen after 21 days of treatment with both doses of UFH. There were no serious adverse events or effects on systemic coagulation. Pre-clinical studies demonstrated that the basic proteins lactoferrin, platelet factor-4 (PF-4), IL-8 and polyarginine, as a model of the eosinophil cationic protein (ECP), found in COPD sputum neutralise the anticoagulant activity of heparin. CONCLUSION: Inhaled nebulised UFH is safe and provides additional clinical benefit for patients with moderate to very severe COPD through effects that are independent of its anticoagulant activity.


Assuntos
Albuterol/administração & dosagem , Beclometasona/administração & dosagem , Heparina/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Administração por Inalação , Idoso , Idoso de 80 Anos ou mais , Animais , Broncodilatadores/administração & dosagem , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Seguimentos , Volume Expiratório Forçado , Glucocorticoides/administração & dosagem , Heparina/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Nebulizadores e Vaporizadores , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Qualidade de Vida , Testes de Função Respiratória , Índice de Gravidade de Doença , Suínos , Fatores de Tempo
11.
Pharmacol Rev ; 68(1): 76-141, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26672027

RESUMO

Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.


Assuntos
Anticoagulantes/farmacologia , Heparina/farmacologia , Anti-Inflamatórios/farmacologia , Anticoagulantes/efeitos adversos , Antineoplásicos/farmacologia , Antivirais/farmacologia , Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , Heparina/efeitos adversos , Heparina de Baixo Peso Molecular/farmacologia , Heparinoides/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Agregados Proteicos/fisiologia , Selectinas/metabolismo , Venenos de Serpentes/metabolismo , Relação Estrutura-Atividade
12.
J Allergy Clin Immunol ; 135(2): 528-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445826

RESUMO

BACKGROUND: Clinical studies reveal platelet activation in patients with asthma, allergic rhinitis, and eczema. This is distinct from platelet aggregation, which is critical for the maintenance of hemostasis and in which a role for platelet purinergic receptors is well documented. However, purines are also essential for inflammatory cell trafficking in animal models of allergic lung inflammation, which are known to be platelet dependent, yet the role of purines in the platelet activation accompanying inflammation is unknown. OBJECTIVES: We investigated whether the involvement of purine activation of platelets during allergic inflammation is distinct from purine involvement in platelet aggregation. METHODS: BALB/c mice were sensitized to ovalbumin and subsequent airway ovalbumin challenge. Bronchoalveolar lavage fluid was analyzed for inflammatory cells, and blood samples were assessed for platelet activation. The role of platelet purinergic receptors and associated signaling mechanisms (RhoA) were assessed. RESULTS: P2Y1, but not P2Y12 or P2X1, antagonism inhibited pulmonary leukocyte recruitment. The formation of platelet-leukocyte complexes in vivo and platelet/P-selectin-dependent polymorphonuclear cell migration in vitro were exclusively platelet P2Y1 receptor dependent. Furthermore, platelet P2Y1 activation resulted in RhoA activity in vivo after allergen challenge, and RhoA signaling in platelets through P2Y1 stimulation was required for platelet-dependent leukocyte chemotaxis in vitro. Leukocyte recruitment in thrombocytopenic mice remained suppressed after reinfusion of platelets pretreated with a P2Y1 antagonist or a Rho-associated kinase 1 inhibitor, confirming the crucial role of platelet P2Y1 receptor and subsequent activation of RhoA. CONCLUSION: RhoA signaling downstream of platelet P2Y1, but not P2Y12, represents a clear dichotomy in platelet activation during allergic inflammation versus hemostasis.


Assuntos
Difosfato de Adenosina/farmacologia , Quimiotaxia de Leucócito/imunologia , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Alérgenos/imunologia , Animais , Plaquetas/imunologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Ovalbumina/imunologia , Selectina-P/metabolismo , Agregação Plaquetária , Agonistas do Receptor Purinérgico P2Y/farmacologia , Transdução de Sinais
13.
Blood ; 125(7): 1146-58, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25538043

RESUMO

The small GTPase Rac is required for neutrophil recruitment during inflammation, but its guanine-nucleotide exchange factor (GEF) activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during lipopolysaccharide (LPS)-induced pulmonary inflammation, with altered intercellular adhesion molecule 1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin-dependent adhesion in airway postcapillary venules. Analysis of adhesion molecule expression, neutrophil adhesion, spreading, and migration suggested that these defects were only partially neutrophil-intrinsic and were not obviously involving vascular endothelial cells. Instead, P1V1 and P1V3 platelets recapitulated the impairment of LPS-induced intravascular neutrophil adhesion and recruitment, showing P-Rex and Vav expression in platelets to be crucial. Similarly, during ovalbumin-induced allergic inflammation, pulmonary recruitment of P1V1 and P1V3 eosinophils, monocytes, and lymphocytes was compromised in a platelet-dependent manner, and airway inflammation was essentially abolished, resulting in improved airway responsiveness. Therefore, platelet P-Rex and Vav family Rac-GEFs play important proinflammatory roles in leukocyte recruitment.


Assuntos
Plaquetas/metabolismo , Quimiotaxia de Leucócito/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Inflamação/genética , Inflamação/imunologia , Proteínas Proto-Oncogênicas c-vav/genética , Doença Aguda , Animais , Adesão Celular/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Pneumonia/genética , Pneumonia/imunologia , Proteínas Proto-Oncogênicas c-vav/metabolismo
14.
J Biol Chem ; 289(41): 28284-98, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25147180

RESUMO

Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: → 3)GalNAcß4,6S(1 → 4) [FucαX(1 → 3)]GlcAß(1 →, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Le(x) blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu(2+)-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention.


Assuntos
Anti-Inflamatórios não Esteroides/química , Sulfatos de Condroitina/química , Doenças do Sistema Imunitário/tratamento farmacológico , Transtornos Leucocíticos/tratamento farmacológico , Peritonite/tratamento farmacológico , Proteínas Secretadas Inibidoras de Proteinases/química , Pepinos-do-Mar/química , Animais , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Configuração de Carboidratos , Sulfatos de Condroitina/isolamento & purificação , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacologia , Peróxido de Hidrogênio , Doenças do Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/patologia , Ferro , Selectina L/química , Selectina L/metabolismo , Transtornos Leucocíticos/metabolismo , Transtornos Leucocíticos/patologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Oxirredução , Selectina-P/química , Selectina-P/metabolismo , Peritonite/metabolismo , Peritonite/patologia , Proteínas Secretadas Inibidoras de Proteinases/isolamento & purificação , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/farmacologia
15.
Am J Physiol Cell Physiol ; 306(12): C1184-90, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24740543

RESUMO

Heparanase (HPSE1) is known to be involved in mechanisms of metastatic tumor cell migration. This enzyme selectively cleaves heparan sulfate proteoglycans (HSPG), which are ubiquitously expressed in mammals and are known to be involved in regulating the activity of an array of inflammatory mediators. In the present study, we have investigated the effects of human recombinant heparanase, the inactive precursor of this enzyme (proheparanase) and enzymatically inactivated heparanase, on inflammatory cell recruitment in the rat and on human leukocyte-endothelial adhesion in vitro. Intraperitoneal injection of heparanase (500 µg) induced a significant inflammatory cell infiltrate in the rat, as assessed by peritoneal lavage 4 h later. Intravital microscopy of the mesenteric microcirculation of anesthetized rats showed an increase in rolling and adherent cells in postcapillary venules that was sensitive to heparin, a nonselective inhibitor of heparanase activity. In vitro, heparanase augmented the adhesion of human neutrophils and mononuclear cells to human umbilical vein endothelial cells in a concentration-dependent manner. Proheparanase had similar effects to the active enzyme both with respect to leukocyte accumulation in the peritoneal cavity and adhesion in vitro. However, heat-inactivated heparanase induced cell adhesion in vitro but was without effect in vivo. Together, these data indicate a role for heparanase in inflammatory cell trafficking in vivo that appears to require enzymatic activity.


Assuntos
Endotélio Vascular/enzimologia , Glucuronidase/genética , Inflamação/enzimologia , Leucócitos/citologia , Animais , Adesão Celular/genética , Movimento Celular/genética , Células Cultivadas , Endotélio Vascular/metabolismo , Glucuronidase/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Leucócitos/enzimologia , Ratos
16.
Basic Clin Pharmacol Toxicol ; 114(5): 365-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24517491

RESUMO

Selective phosphodiesterase (PDE) 4 and dual PDE3/4 inhibitors have attracted considerable interest as potential therapeutic agents for the treatment of respiratory diseases, largely by virtue of their anti-inflammatory (PDE4) and bifunctional bronchodilator/anti-inflammatory (PDE3/4) effects. Many of these agents have, however, failed in early development for various reasons, including dose-limiting side effects when administered orally and lack of sufficient activity when inhaled. Indeed, only one selective PDE4 inhibitor, the orally active roflumilast-n-oxide, has to date received marketing authorization. The majority of the compounds that have failed were, however, orally administered and non-selective for either PDE3 (A,B) or PDE4 (A,B,C,D) subtypes. Developing an inhaled dual PDE3/4 inhibitor that is rapidly cleared from the systemic circulation, potentially with subtype specificity, may represent one strategy to improve the therapeutic index and also exhibit enhanced efficacy versus inhibition of either PDE3 or PDE4 alone, given the potential positive interactions with regard to anti-inflammatory and bronchodilator effects that have been observed pre-clinically with dual inhibition of PDE3 and PDE4 compared with inhibition of either isozyme alone. This MiniReview will summarize recent clinical data obtained with PDE inhibitors and the potential for these drugs to treat COPD and other inflammatory airways diseases such as asthma and cystic fibrosis.


Assuntos
Inibidores da Fosfodiesterase 3/uso terapêutico , Inibidores da Fosfodiesterase 4/uso terapêutico , Doenças Respiratórias/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doenças Respiratórias/enzimologia , Doenças Respiratórias/fisiopatologia
17.
Lancet Respir Med ; 1(9): 714-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24429275

RESUMO

BACKGROUND: Many patients with asthma or chronic obstructive pulmonary disease (COPD) routinely receive a combination of an inhaled bronchodilator and anti-inflammatory glucocorticosteroid, but those with severe disease often respond poorly to these classes of drug. We assessed the efficacy and safety of a novel inhaled dual phosphodiesterase 3 (PDE3) and PDE4 inhibitor, RPL554 for its ability to act as a bronchodilator and anti-inflammatory drug. METHODS: Between February, 2009, and January, 2013, we undertook four proof-of-concept clinical trials in the Netherlands, Italy, and the UK. Nebulised RPL554 was examined in study 1 for safety in 18 healthy men who were randomly assigned (1:1:1) to receive an inhaled dose of RPL554 (0·003 mg/kg or 0·009 mg/kg) or placebo by a computer-generated randomisation table. Subsequently, six non-smoking men with mild allergic asthma received single doses of RPL554 (three received 0·009 mg/kg and three received 0·018 mg/kg) in an open-label, adaptive study, and then ten men with mild allergic asthma were randomly assigned to receive placebo or RPL554 (0·018 mg/kg) by a computer-generated randomisation table for an assessment of safety, bronchodilation, and bronchoprotection. Study 2 examined the reproducibility of the bronchodilator response to a daily dose of nebulised RPL554 (0·018 mg/kg) for 6 consecutive days in a single-blind (patients masked), placebo-controlled study in 12 men with clinically stable asthma. The safety and bronchodilator effect of RPL554 (0·018 mg/kg) was assessed in study 3, an open-label, placebo-controlled crossover trial, in 12 men with mild-to-moderate COPD. In study 4, a placebo-controlled crossover trial, the effect of RPL554 (0·018 mg/kg) on lipopolysaccharide-induced inflammatory cell infiltration in induced sputum was investigated in 21 healthy men. In studies 3 and 4, randomisation was done by computer-generated permutation with a block size of two for study 3 and four for study 4. Unless otherwise stated, participants and clinicians were masked to treatment assignment. Analyses were by intention to treat. All trials were registered with EudraCT, numbers 2008-005048-17, 2011-001698-22, 2010-023573-18, and 2012-000742-34. FINDINGS: Safety was a primary endpoint of studies 1 and 3 and a secondary endpoint of studies 2 and 4. Overall, RPL554 was well tolerated, and adverse events were generally mild and of equal frequency between placebo and active treatment groups. Efficacy was a primary endpoint of study 2 and a secondary endpoint of studies 1 and 3. Study 1 measured change in forced expiratory volume in 1 s (FEV1) and provocative concentration of methacholine causing a 20% fall in FEV1 (PC20MCh) in participants with asthma. RPL554 produced rapid bronchodilation in patients with asthma with an FEV1 increase at 1 h of 520 mL (95% CI 320-720; p<0·0001), which was a 14% increase from placebo, and increased the PC20MCh by 1·5 doubling doses (95% CI 0·63-2·28; p=0·004) compared with placebo. The primary endpoint of study 2 was maximum FEV1 reached during 6 h after dosing with RPL554 in patients with asthma. RPL554 produced a similar maximum mean increase in FEV1 from placebo on day 1 (555 mL, 95% CI 442-668), day 3 (505 mL, 392-618), and day 6 (485 mL, 371-598; overall p<0·0001). A secondary endpoint of study 3 (patients with COPD) was the increase from baseline in FEV1. RPL554 produced bronchodilation with a mean maximum FEV1 increase of 17·2% (SE 5·2). In healthy individuals (study 4), the primary endpoint was percentage change in neutrophil counts in induced sputum 6 h after lipopolysaccharide challenge. RPL554 (0·018 mg/kg) did not significantly reduce the percentage of neutrophils in sputum (80·3% in the RPL554 group vs 84·2% in the placebo group; difference -3·9%, 95% CI -9·4 to 1·6, p=0·15), since RPL554 significantly reduced neutrophils (p=0·002) and total cells (p=0·002) to a similar degree. INTERPRETATION: In four exploratory studies, inhaled RPL554 is an effective and well tolerated bronchodilator, bronchoprotector, and anti-inflammatory drug and further studies will establish the full potential of this new drug for the treatment of patients with COPD or asthma. FUNDING: Verona Pharma.


Assuntos
Asma/tratamento farmacológico , Isoquinolinas/administração & dosagem , Inibidores da Fosfodiesterase 3/administração & dosagem , Inibidores da Fosfodiesterase 4/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pirimidinonas/administração & dosagem , Administração por Inalação , Adulto , Idoso , Asma/fisiopatologia , Feminino , Seguimentos , Volume Expiratório Forçado/efeitos dos fármacos , Volume Expiratório Forçado/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Nebulizadores e Vaporizadores , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
18.
Handb Exp Pharmacol ; (207): 281-305, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22566229

RESUMO

Heparin has long been known to possess biological effects that are unrelated to its anticoagulant activity. In particular, much emphasis has been placed upon heparin, or novel agents based upon the heparin template, as potential anti-inflammatory agents. Moreover, heparin has been reported to possess clinical benefit in humans, including in chronic inflammatory diseases and cancer, that are over and above the expected effects on blood coagulation and which in many cases are entirely separable from this role. This chapter aims to provide an overview of the non-anticoagulant effects that have been ascribed to heparin, from those involving the binding and inhibition of specific mediators involved in the inflammatory process to effects in whole system models of disease, with reference to the effects of heparin that have been reported to date in human diseases.


Assuntos
Heparina/uso terapêutico , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Heparina/farmacologia , Humanos
19.
Eur Respir J ; 40(3): 724-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22496331

RESUMO

The hallmark of chronic obstructive pulmonary disease (COPD) is an enhanced or abnormal inflammatory immune response of the lungs to inhaled particles and gases, usually from cigarette smoke, characterised by increased numbers of neutrophils, activated macrophages and activated T-lymphocytes (Tc1 and Th1 cells). Therefore, suppression of the inflammatory response is a logical approach to the treatment of COPD. Despite the inflammatory nature of COPD, currently available anti-inflammatory therapies provide little or no benefit in COPD patients and may have detrimental effects. For this reason, there is an urgent need to discover effective and safe anti-inflammatory treatments that might prevent the relentless progression of the disease. In recent years, attention has largely been focused on inhibition of recruitment and activation of inflammatory cells, and on antagonism of their products. In this review, we put together a summary of the state-of-the-art development of clearly and/or potentially useful anti-inflammatory strategies in COPD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Quimiocinas/antagonistas & inibidores , Progressão da Doença , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Camundongos , Ratos , Índice de Gravidade de Doença , Resultado do Tratamento
20.
Magn Reson Med ; 67(2): 499-509, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21656559

RESUMO

Magnetic resonance imaging (MRI) has been used to follow the course of bleomycin-induced lung injury in mice and to investigate two knockout mouse lines with the aim of providing potential therapeutic targets. Bleomycin (0.25 mg/kg) was administered intranasally six times, once a day. MRI was carried out on spontaneously breathing animals up to day 70 after bleomycin. Neither cardiac nor respiratory gating was applied during image acquisition. A long lasting response following bleomycin has been detected by MRI in the lungs of male C57BL/6 mice. Histology showed that, from day 14-70 after bleomycin, fibrosis was the predominant component of the injury. Female C57BL/6 mice displayed a smaller response than males. Bleomycin-induced injury was significantly more pronounced in C57BL/6 than in Balb/C mice. MRI and histology demonstrated a protection against bleomycin insult in female heterozygous and male homozygous cancer Osaka thyroid kinase knockout animals. In contrast, no protection was seen in cadherin-11 knockout animals. In summary, MRI can quantify, in spontaneously breathing mice, bleomycin-induced lung injury. With the ability for repetitive measurements in the same animal, the technique is attractive for in vivo target analysis and compound profiling in this murine model.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Pulmão/efeitos dos fármacos , Imageamento por Ressonância Magnética , Fibrose Pulmonar/induzido quimicamente , Administração Intranasal , Alelos , Animais , Caderinas/genética , Relação Dose-Resposta a Droga , Feminino , Triagem de Portadores Genéticos , Predisposição Genética para Doença , Pulmão/patologia , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA