Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 49(38): 8398-414, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20799687

RESUMO

Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.


Assuntos
Bacillus anthracis/enzimologia , Cisteína/biossíntese , Cisteína/metabolismo , Bacillus anthracis/metabolismo , Sítios de Ligação , Boroidretos , Cisteína/análogos & derivados , Cisteína/química , Glucosamina/análogos & derivados , Glucosamina/biossíntese , Glucosamina/metabolismo , Glicopeptídeos , Glicosiltransferases/biossíntese , Glicosiltransferases/metabolismo , Inositol , Liases Intramoleculares , Peso Molecular , Oxirredução , Compostos de Sulfidrila/metabolismo , Difosfato de Uridina/biossíntese , Difosfato de Uridina/metabolismo
2.
Cell Microbiol ; 12(3): 301-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20039878

RESUMO

Granuloma formation represents a pivotal point during human infection with Mycobacterium tuberculosis, for this structure may limit mycobacterial spread and prevent active disease, while at the same time allow for the survival and persistence of viable mycobacteria within the host. The current therapeutic regimens for treating tuberculosis disease have proven effective in developing countries. However, in countries with large populations, limited access to health care, and high incidence of HIV co-infection, tuberculosis disease continues to represent a major global health emergency. Particularly, the emergence of extensively and multi-drug-resistant forms of tuberculosis underscores the need develop new treatment strategies. Recent mechanistic studies have identified bacterial virulence mechanisms that subvert host responses and lead to an inappropriate upregulation of host factors such as tumour necrosis factor-alpha (TNF-alpha) and matrix metalloproteinases (MMPs). Paradoxically, then, part of the mycobacterial virulence programme may be to promote granuloma development and maturation. These observations suggest that together with appropriate anti-microbials host-based therapeutics directed at TNF-alpha and MMP inhibition may counteract the microbial subterfuge, reduce the pro-granulomatous response, and offer an enhanced therapeutic effect. Host-directed therapy that alters the immune response may offer an alternative approach towards reducing treatment duration, the risk of anti-microbial resistance and improving patient outcome.


Assuntos
Granuloma/imunologia , Granuloma/microbiologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/microbiologia , Antituberculosos/uso terapêutico , Humanos , Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/imunologia , Tuberculose/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA