Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 206(9): 2101-2108, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33846225

RESUMO

Acute graft-versus-host disease (aGvHD) is a severe, often lethal, complication of hematopoietic stem cell transplantation, and although prophylactic regimens are given as standard pretransplantation therapy, up to 60% of these patients develop aGvHD, and require additional immunosuppressive intervention. We treated mice with a purified probiotic molecule, exopolysaccharide (EPS) from Bacillus subtilis, shortly before and after induction of aGvHD and found that, whereas only 10% of control mice survived to day 80, 70% of EPS-treated mice survived to 80 d. EPS treatment of donor-only mice resulted in ∼60% survival. Using a biosensor mouse model to assess inflammation in live mice during aGvHD, we found that EPS prevented the activation of alloreactive donor T cells. In vitro, EPS did not affect T cells directly but, instead, induced bone marrow-derived dendritic cells (BMDCs) that displayed characteristics of inhibitory dendritic cells (DCs). Development of these BMDCs required TLR4 signaling through both MyD88 and TRIF pathways. Using BMDCs derived from IDO knockout mice, we showed that T cell inhibition by EPS-treated BMDCs was mediated through the suppressive effects of IDO. These studies describe a bacterial molecule that modulates immune responses by inducing inhibitory DCs in a TLR4-dependent manner, and these cells have the capacity to inhibit T cell activation through IDO. We suggest that EPS or EPS-treated DCs can serve as novel agents for preventing aGvHD.


Assuntos
Bacillus subtilis/química , Doença Enxerto-Hospedeiro/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Bacillus subtilis/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Immunol ; 203(9): 2497-2507, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562211

RESUMO

Inflammasomes are multiprotein complexes that coordinate cellular inflammatory responses and mediate host defense. Following recognition of pathogens and danger signals, inflammasomes assemble and recruit and activate caspase-1, the cysteine protease that cleaves numerous downstream targets, including pro-IL-1ß and pro-IL-18 into their biologically active form. In this study, we sought to develop a biosensor that would allow us to monitor the initiation, progression, and resolution of inflammation in living animals. To this end, we inserted a known caspase-1 target sequence into a circularly permuted luciferase construct that becomes bioluminescent upon protease cleavage. This biosensor was activated in response to various inflammatory stimuli in human monocytic cell lines and murine bone marrow-derived macrophages. Next, we generated C57BL/6 transgenic mice constitutively expressing the caspase-1 biosensor. We were able to monitor the spatiotemporal dynamics of caspase-1 activation and onset of inflammation in individual animals in the context of a systemic bacterial infection, colitis, and acute graft-versus-host disease. These data established a model whereby the development and progression of inflammatory responses can be monitored in the context of these and other mouse models of disease.


Assuntos
Técnicas Biossensoriais/métodos , Caspase 1/análise , Inflamação/etiologia , Animais , Apoptose , Colite/enzimologia , Progressão da Doença , Doença Enxerto-Hospedeiro/enzimologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/enzimologia , Células THP-1
3.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396894

RESUMO

Staphylococcus aureus causes severe systemic infection with high mortality rates. We previously identified exopolysaccharide (EPS) from a probiotic, Bacillus subtilis, that induces anti-inflammatory macrophages with an M2 phenotype and protects mice from Citrobacter rodentium-induced colitis. We tested if EPS could protect from systemic infection induced by S. aureus and found that EPS-treated mice had enhanced survival as well as reduced weight loss, systemic inflammation, and bacterial burden. While macrophages from EPS-treated mice display an M2 phenotype, they also restrict growth of internalized S. aureus through reactive oxygen species (ROS), reminiscent of proinflammatory phagocytes. These EPS-induced macrophages also limit T cell activation by S. aureus superantigens, and EPS abrogates systemic induction of gamma interferon after infection. We conclude that B. subtilis EPS is an immunomodulatory agent that induces hybrid macrophages that bolster antibacterial immunity and simultaneously limit inflammation, reducing disease burden and promoting host survival.


Assuntos
Fatores Imunológicos/administração & dosagem , Inflamação/prevenção & controle , Macrófagos/imunologia , Polissacarídeos Bacterianos/administração & dosagem , Probióticos/administração & dosagem , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Staphylococcus aureus/efeitos dos fármacos , Análise de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA