Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 45(4): 2601-2627, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37059838

RESUMO

Frailty in aging is driven by the dysregulation of multiple biological pathways. Protectin DX (PDX) is a docosahexaenoic acid (DHA)-derived molecule that alleviates many chronic inflammatory disorders, but its potential effects on frailty remain unknown. Our goal is to identify age-related impairments in metabolic systems and to evaluate the therapeutic potential of PDX on frailty, physical performance, and health parameters. A set of 22-month-old C57BL/6 male and female mice were assigned to vehicle (Old) or PDX daily gavage treatment for 9 weeks, whereas 6-month-old (Adult) mice received only vehicle. Forelimb and hindlimb strength, endurance, voluntary wheel activity and walking speed determined physical performance and were combined with a frailty index score and body weight loss to determine frailty status. Our data shows that old vehicle-treated mice from both sexes had body weight loss paralleling visceromegaly, and Old females also had impaired insulin clearance as compared to the Adult group. Aging was associated with physical performance decline together with higher odds of frailty development. There was also age-driven mesangial expansion and glomerular hypertrophy as well as bone mineral density loss. All of the in vivo and in vitro impairments observed with aging co-occurred with upregulation of inflammatory pathways and Myc signaling as well as downregulation of genes related to adipogenesis and oxidative phosphorylation in liver. PDX attenuated the age-driven physical performance (strength, exhaustion, walking speed) decline, promoted robustness, prevented bone losses and partially reversed changes in hepatic expression of Myc targets and metabolic genes. In conclusion, our data provides evidence of the beneficial therapeutic effect of PDX against features of frailty in mice. Further studies are warranted to investigate the mechanisms of action and the potential for human translation.


Assuntos
Ácidos Docosa-Hexaenoicos , Fragilidade , Camundongos , Masculino , Humanos , Feminino , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Transdução de Sinais , Fragilidade/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/farmacologia , Camundongos Endogâmicos C57BL , Redução de Peso
2.
Nat Commun ; 11(1): 3282, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612176

RESUMO

Osteocytes, cells ensconced within mineralized bone matrix, are the primary skeletal mechanosensors. Osteocytes sense mechanical cues by changes in fluid flow shear stress (FFSS) across their dendritic projections. Loading-induced reductions of osteocytic Sclerostin (encoded by Sost) expression stimulates new bone formation. However, the molecular steps linking mechanotransduction and Sost suppression remain unknown. Here, we report that class IIa histone deacetylases (HDAC4 and HDAC5) are required for loading-induced Sost suppression and bone formation. FFSS signaling drives class IIa HDAC nuclear translocation through a signaling pathway involving direct HDAC5 tyrosine 642 phosphorylation by focal adhesion kinase (FAK), a HDAC5 post-translational modification that controls its subcellular localization. Osteocyte cell adhesion supports FAK tyrosine phosphorylation, and FFSS triggers FAK dephosphorylation. Pharmacologic FAK catalytic inhibition reduces Sost mRNA expression in vitro and in vivo. These studies demonstrate a role for HDAC5 as a transducer of matrix-derived cues to regulate cell type-specific gene expression.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/genética , Histona Desacetilases/genética , Mecanotransdução Celular/genética , Osteócitos/metabolismo , Transdução de Sinais/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Perfilação da Expressão Gênica/métodos , Histona Desacetilases/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/genética , Fosforilação
3.
J Bone Miner Metab ; 38(5): 631-638, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32350615

RESUMO

INTRODUCTION: Disuse-induced bone loss is caused by a suppression of osteoblastic bone formation and an increase in osteoclastic bone resorption. There are few data available for the effects of environmental conditions, i.e., atmospheric pressure and/or oxygen concentration, on osteoporosis. This study examined the effects of mild hyperbaric oxygen at 1317 hPa with 40% oxygen on unloading-induced osteoporosis. MATERIALS AND METHODS: Eighteen 8-week old male Wistar rats were randomly divided into three groups: the control for 21 days without unloading and mild hyperbaric oxygen (NOR, n = 6), the unloading for 21 days and recovery for 10 days without mild hyperbaric oxygen (HU + NOR, n = 6), and the unloading for 21 days and recovery for 10 days with mild hyperbaric oxygen (HU + MHO, n = 6). RESULTS: The cortical thickness and trabecular bone surface area were decreased in the HU + NOR group compared to the NOR group. There were no differences between the NOR and HU + MHO groups. Osteoclast surface area and Sclerostin (Sost) mRNA expression levels were decreased in the HU + MHO group compared to the HU + NOR group. These results suggested that the loss of the cortical and trabecular bone is inhibited by mild hyperbaric oxygen, because of an inhibition of osteoclasts and enhancement of bone formation with decreased Sost expression. CONCLUSIONS: We conclude that exposure to mild hyperbaric oxygen partially protects from the osteoporosis induced by hindlimb unloading.


Assuntos
Elevação dos Membros Posteriores/fisiologia , Oxigenoterapia Hiperbárica , Osteoporose/fisiopatologia , Osteoporose/terapia , Animais , Peso Corporal , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Osso Esponjoso/patologia , Osso Esponjoso/fisiopatologia , Osso Cortical/patologia , Osso Cortical/fisiopatologia , Marcadores Genéticos/genética , Lâmina de Crescimento/patologia , Masculino , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoclastos/patologia , Osteoporose/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar
4.
JBMR Plus ; 3(10): e10212, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31687648

RESUMO

Diabetic bone disease is a complication of type I and type II diabetes, both of which are increasing in the United States and elsewhere. Increased hip and foot fracture rates do not correlate well with changes in bone mineral density (BMD), whereas studies support the importance of collagen structure to bone strength. Extracellular lysyl oxidase (LOX) catalyzes the oxidative deamination of hydroxylysine and lysine residues in collagens resulting in aldehydes that subsequently form critically important biosynthetic crosslinks that stabilize functional collagens. Although LOX-dependent biosynthetic crosslinks in bone collagen are deficient in diabetic bone, the expression and regulation of bone LOXs in diabetes have not been comprehensively studied. Here, we found that LOX is profoundly downregulated in bone in diabetes. Moreover, we have identified a novel metabolic regulatory relationship that is dysregulated in diabetes using mouse models. Data indicate that the incretin (gastric hormone) known as glucose-dependent insulinotropic polypeptide (GIP) that is anabolic to osteoblasts strongly upregulates LOX, and that this regulation is disrupted in the streptozotocin-induced model of diabetes in mice. In vivo and in vitro studies support that diabetes results in elevated circulating peripheral dopamine, likely also derived from the gut, and is responsible for blocking GIP signaling and LOX levels in osteoblasts. Moreover, peripheral administration of the dopamine D2 receptor antagonist amisulpride to diabetic mice restored trabecular bone structure to near normal and partially reversed downregulation of LOX. Taken together our data identifies a novel metabolic relationship between the gut-derived hormone GIP and bone-derived LOX, and points to the importance of LOX dysregulation in the pathology of diabetic bone disease. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

5.
Blood ; 134(3): 227-238, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003999

RESUMO

Vitamin K antagonists (VKAs) have been used in 1% of the world's population for prophylaxis or treatment of thromboembolic events for 64 years. Impairment of osteoblast function and osteoporosis has been described in patients receiving VKAs. Given the involvement of cells of the bone marrow microenvironment (BMM), such as mesenchymal stem cells (MSCs) and macrophages, as well as other factors such as the extracellular matrix for the maintenance of normal hematopoietic stem cells (HSCs), we investigated a possible effect of VKAs on hematopoiesis via the BMM. Using various transplantation and in vitro assays, we show here that VKAs alter parameters of bone physiology and reduce functional HSCs 8-fold. We implicate impairment of the functional, secreted, vitamin K-dependent, γ-carboxylated form of periostin by macrophages and, to a lesser extent, MSCs of the BMM and integrin ß3-AKT signaling in HSCs as at least partly causative of this effect, with VKAs not being directly toxic to HSCs. In patients, VKA use associates with modestly reduced leukocyte and monocyte counts, albeit within the normal reference range. VKAs decrease human HSC engraftment in immunosuppressed mice. Following published examples that alteration of the BMM can lead to hematological malignancies in mice, we describe, without providing a causal link, that the odds of VKA use are higher in patients with vs without a diagnosis of myelodysplastic syndrome (MDS). These results demonstrate that VKA treatment impairs HSC function via impairment of the BMM and the periostin/integrin ß3 axis, possibly associating with increased MDS risk.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Microambiente Celular/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Vitamina K/antagonistas & inibidores , Animais , Anticoagulantes/farmacologia , Biomarcadores , Moléculas de Adesão Celular/metabolismo , Relação Dose-Resposta a Droga , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo , Vitamina K/farmacologia , Varfarina/farmacologia
6.
Curr Osteoporos Rep ; 15(4): 318-325, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28612339

RESUMO

PURPOSE OF REVIEW: Over the past decades, osteocytes have emerged as mechano-sensors of bone and master regulators of bone homeostasis. This article summarizes latest research and progress made in understanding osteocyte mechanobiology and critically reviews tools currently available to study these cells. RECENT FINDINGS: Whereas increased mechanical forces promote bone formation, decrease loading is always associated with bone loss and skeletal fragility. Recent studies identified cilia, integrins, calcium channels, and G-protein coupled receptors as important sensors of mechanical forces and Ca2+ and cAMP signaling as key effectors. Among transcripts regulated by mechanical forces, sclerostin and RANKL have emerged as potential therapeutic targets for disuse-induced bone loss. In this paper, we review the mechanisms by which osteocytes perceive and transduce mechanical cues and the models available to study mechano-transduction. Future directions of the field are also discussed.


Assuntos
Osso e Ossos/metabolismo , Osteócitos/metabolismo , Osteogênese/fisiologia , Osteoporose/metabolismo , Suporte de Carga/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Fenômenos Biomecânicos , Proteínas Morfogenéticas Ósseas/genética , Osso e Ossos/fisiologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cílios/fisiologia , AMP Cíclico/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Marcadores Genéticos/genética , Homeostase , Humanos , Integrinas/metabolismo , Mecanotransdução Celular , Osteócitos/fisiologia , Osteoporose/fisiopatologia , Ligante RANK/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
J Bone Miner Res ; 30(12): 2273-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26191777

RESUMO

Cells of the osteoblast lineage provide critical support for B lymphopoiesis in the bone marrow (BM). Parathyroid hormone (PTH) signaling in osteoblastic cells through its receptor (PPR) is an important regulator of hematopoietic stem cells; however, its role in regulation of B lymphopoiesis is not clear. Here we demonstrate that deletion of PPR in osteoprogenitors results in a significant loss of trabecular and cortical bone. PPR signaling in osteoprogenitors, but not in mature osteoblasts or osteocytes, is critical for B-cell precursor differentiation via IL-7 production. Interestingly, despite a severe reduction in B-cell progenitors in BM, mature B-lymphocytes were increased 3.5-fold in the BM of mice lacking PPR in osteoprogenitors. This retention of mature IgD(+) B cells in the BM was associated with increased expression of vascular cell adhesion molecule 1 (VCAM1) by PPR-deficient osteoprogenitors, and treatment with VCAM1 neutralizing antibody increased mobilization of B lymphocytes from mutant BM. Our results demonstrate that PPR signaling in early osteoblasts is necessary for B-cell differentiation via IL-7 secretion and for B-lymphocyte mobilization via VCAM1.


Assuntos
Linfócitos B/citologia , Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Animais , Anticorpos Neutralizantes/química , Apoptose , Osso e Ossos/metabolismo , Diferenciação Celular , Quimiocina CXCL12/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Imuno-Histoquímica , Interleucina-7/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteócitos/citologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Microtomografia por Raio-X
8.
J Biol Chem ; 290(27): 16744-58, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25953900

RESUMO

Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone.


Assuntos
Glicoproteínas/genética , Osteócitos/metabolismo , Regulação para Cima , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fenômenos Biomecânicos , Linhagem Celular , Glicoproteínas/metabolismo , Gravitação , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Osteócitos/química , Ligante RANK/genética , Ligante RANK/metabolismo , Proteínas Wnt/genética
9.
J Bone Miner Res ; 29(11): 2414-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24806274

RESUMO

In humans, aging and glucocorticoid treatment are associated with reduced bone mass and increased marrow adiposity, suggesting that the differentiation of osteoblasts and adipocytes may be coordinately regulated. Within the bone marrow, both osteoblasts and adipocytes are derived from mesenchymal progenitor cells, but the mechanisms guiding the commitment of mesenchymal progenitors into osteoblast versus adipocyte lineages are not fully defined. The heterotrimeric G protein subunit Gs α activates protein kinase A signaling downstream of several G protein-coupled receptors including the parathyroid hormone receptor, and plays a crucial role in regulating bone mass. Here, we show that targeted ablation of Gs α in early osteoblast precursors, but not in differentiated osteocytes, results in a dramatic increase in bone marrow adipocytes. Mutant mice have reduced numbers of mesenchymal progenitors overall, with an increase in the proportion of progenitors committed to the adipocyte lineage. Furthermore, cells committed to the osteoblast lineage retain adipogenic potential both in vitro and in vivo. These findings have clinical implications for developing therapeutic approaches to direct the commitment of mesenchymal progenitors into the osteoblast lineage.


Assuntos
Adipócitos/metabolismo , Adipogenia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Adipócitos/citologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia
10.
J Biol Chem ; 288(28): 20122-34, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23729679

RESUMO

Parathyroid hormone (PTH) is the only Food and Drug Administration-approved anabolic agent to treat osteoporosis; however, the cellular targets of PTH action in bone remain controversial. PTH modulates bone turnover by binding to the PTH/PTH-related peptide (PTHrP) type 1 receptor (PPR), a G-protein-coupled receptor highly expressed in bone and kidneys. Osteocytes, the most abundant cells in adult bone, also express PPR. However, the physiological relevance of PPR signaling in osteocytes remains to be elucidated. Toward this goal, we generated mice with PPR deletion in osteocytes (Ocy-PPRKO). Skeletal analysis of these mice revealed a significant increase in bone mineral density and trabecular and cortical bone parameters. Osteoblast activities were reduced in these animals, as demonstrated by decreased collagen type I α1 mRNA and receptor activator of NF-κB ligand (RANKL) expression. Importantly, when subjected to an anabolic or catabolic PTH regimen, Ocy-PPRKO animals demonstrated blunted skeletal responses. PTH failed to suppress SOST/Sclerostin or induce RANKL expression in Ocy-PPRKO animals compared with controls. In vitro, osteoclastogenesis was significantly impaired in Ocy-PPRKO upon PTH administration, indicating that osteocytes control osteoclast formation through a PPR-mediated mechanism. Taken together, these data indicate that PPR signaling in osteocytes is required for bone remodeling, and receptor signaling in osteocytes is needed for anabolic and catabolic skeletal responses.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Animais , Peso Corporal , Densidade Óssea , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA