Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499198

RESUMO

Obesity is a chronic peripheral inflammation condition that is strongly correlated with neurodegenerative diseases and associated with exposure to environmental chemicals. The aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear receptor activated by environmental chemical, such as dioxins, and also is a regulator of inflammation through interacting with nuclear factor (NF)-κB. In this study, we evaluated the anti-obesity and anti-inflammatory activity of HBU651, a novel AhR antagonist. In BV2 microglia cells, HBU651 successfully inhibited lipopolysaccharide (LPS)-mediated nuclear localization of NF-κB and production of NF-κB-dependent proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. It also restored LPS-induced mitochondrial dysfunction. While mice being fed a high-fat diet (HFD) induced peripheral and central inflammation and obesity, HBU651 alleviated HFD-induced obesity, insulin resistance, glucose intolerance, dyslipidemia, and liver enzyme activity, without hepatic and renal damage. HBU651 ameliorated the production of inflammatory cytokines and chemokines, proinflammatory Ly6chigh monocytes, and macrophage infiltration in the blood, liver, and adipose tissue. HBU651 also decreased microglial activation in the arcuate nucleus in the hypothalamus. These findings suggest that HBU651 may be a potential candidate for the treatment of obesity-related metabolic diseases.


Assuntos
Dieta Hiperlipídica , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Citocinas , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Necrose Tumoral alfa
2.
Pharmaceutics ; 14(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015301

RESUMO

Obesity is closely linked to chronic inflammation in peripheral organs and the hypothalamus. Chronic consumption of a high-fat diet (HFD) induces the differentiation of Ly6chigh monocytes into macrophages in adipose tissue, the liver, and the brain, as well as the secretion of pro-inflammatory cytokines. Although cinnamon improves obesity and related diseases, it is unclear which components of cinnamon can affect macrophages and inflammatory cytokines. We performed in silico analyses using ADME, drug-likeness, and molecular docking simulations to predict the active compounds of cinnamon. Among the 82 active compounds of cinnamon, cinnamic acid (CA) showed the highest score of ADME, blood-brain barrier permeability, drug-likeness, and cytokine binding. We then investigated whether CA modulates obesity-induced metabolic profiles and macrophage-related inflammatory responses in HFD-fed mice. While HFD feeding induced obesity, CA ameliorated obesity and related symptoms, such as epididymal fat gain, insulin resistance, glucose intolerance, and dyslipidemia, without hepatic and renal toxicity. CA also improved HFD-induced tumor necrosis factor-α, fat deposition, and macrophage infiltration in the liver and adipose tissue. CA decreased Ly6chigh monocytes, adipose tissue M1 macrophages, and hypothalamic microglial activation. These results suggest that CA attenuates the peripheral and hypothalamic inflammatory monocytes/macrophage system and treats obesity-related metabolic disorders.

3.
Biomed Pharmacother ; 145: 112389, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775235

RESUMO

Parkinson's disease (PD) is a multifactorial neurodegenerative disease with damages to mitochondria and endoplasmic reticulum (ER), followed by neuroinflammation. We previously reported that a triple herbal extract DA-9805 in experimental PD toxin-models had neuroprotective effects by alleviating mitochondrial damage and oxidative stress. In the present study, we investigated whether DA-9805 could suppress ER stress and neuroinflammation in vitro and/or in vivo. Pre-treatment with DA-9805 (1 µg/ml) attenuated upregulation of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and cleaved caspase-3 in SH-SY5Y neuroblastoma cells treated with thapsigargin (1 µg/ml) or tunicamycin (2 µg/ml). In addition, DA-9805 prevented the production of IL-1ß, IL-6, TNF-α and nitric oxide through inhibition of NF-κB activation in BV2 microglial cells stimulated with lipopolysaccharides (LPS). Intraperitoneal injection of LPS (10 mg/kg) into mice can induce acute neuroinflammation and dopaminergic neuronal cell death. Oral administration of DA-9805 (10 or 30 mg/kg/day for 3 days before LPS injection) prevented loss of dopaminergic neurons and activation of microglia and astrocytes in the substantia nigra in LPS-injected mouse models. Taken together, these results indicate that DA-9805 can effectively prevent ER stress and neuroinflammation, suggesting that DA-9805 is a multitargeting and disease-modifying therapeutic candidate for PD.


Assuntos
Antiparkinsonianos , Estresse do Retículo Endoplasmático , Inflamação , Extratos Vegetais , Animais , Humanos , Masculino , Camundongos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neuroblastoma/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Substância Negra/efeitos dos fármacos
4.
Endocrinol Metab (Seoul) ; 36(2): 436-446, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33866778

RESUMO

BACKGROUND: High circulating levels of dioxins and dioxin-like chemicals, acting via the aryl hydrocarbon receptor (AhR), have previously been linked to diabetes. We now investigated whether the serum AhR ligands (AhRL) were higher in subjects with metabolic syndrome (MetS) and in subjects who had developed a worsened glucose tolerance over time. METHODS: Serum AhRL at baseline was measured by a cell-based AhRL activity assay in 70-year-old subjects (n=911) in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. The main outcome measures were prevalent MetS and worsening of glucose tolerance over 5 years of follow-up. RESULTS: AhRL was significantly elevated in subjects with prevalent MetS as compared to those without MetS, following adjustment for sex, smoking, exercise habits, alcohol intake and educational level (P=0.009). AhRL at baseline was higher in subjects who developed impaired fasting glucose or diabetes at age 75 years than in those who remained normoglycemic (P=0.0081). The odds ratio (OR) of AhRL for worsening glucose tolerance over 5 years was 1.43 (95% confidence interval [CI], 1.13 to 1.81; P=0.003, continuous variables) and 2.81 (95% CI, 1.31 to 6.02; P=0.008, in the highest quartile) adjusted for sex, life style factors, body mass index, and glucose. CONCLUSION: These findings support a large body of epidemiologic evidence that exposure to AhR transactivating substances, such as dioxins and dioxin-like chemicals, might be involved in the pathogenesis of MetS and diabetes development. Measurement of serum AhRL in humans can be a useful tool in predicting the onset of metabolic disorders.


Assuntos
Diabetes Mellitus , Síndrome Metabólica , Idoso , Índice de Massa Corporal , Glucose , Humanos , Síndrome Metabólica/epidemiologia , Estudos Prospectivos
5.
Sci Rep ; 11(1): 3185, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542440

RESUMO

Persistent organic pollutants(POPs) are suggested to be potential risk factors for gestational diabetes mellitus(GDM). We examined the hypothesis that the aryl hydrocarbon receptor trans-activating(AhRT) activity, a potential biomarker for the presence of POPs, could be a GDM risk factor in pregnant women. A total of 390 GDM and 100 normal pregnant(non-GDM) subjects in the Korea National Diabetes Program cohort voluntarily participated. We measured AhRT activity and concentrations of ATP and reactive oxygen in the serum collected at the screening of the participants for GDM using recombinant Hepa1c1c7 cells. Odds ratios(ORs) and 95% confidence intervals(CIs) were estimated using multivariable logistic regression models. The sensitivity and specificity of AhRT activity for GDM diagnostics were measured by receiver operating characteristic(ROC) analysis. Body mass index at pre-pregnancy and delivery and systolic blood pressure were significantly higher in the GDM group. AhRT activity was higher, and ATP concentrations were lower in the GDM group than the non-GDM group(P < 0.0001). AhRT activity was significantly higher in the GDM group(OR 29.3, 95% CI 10.9-79.1) compared with non-GDM(P < 0.0001). Serum glucose concentration at 1 h after a 50 g glucose challenge(glucose-50) was moderately correlated with AhRT activity(r2 = 0.387) and negatively correlated with ATP production(r2 = -0.650). In the ROC curve, AhRT activity had 70.9% sensitivity and 90.0% specificity for glucose-50, a GDM screening method. In conclusion, this study suggests that serum AhRT activity is positively associated with the risk of GDM.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Exposição Ambiental/efeitos adversos , Poluentes Orgânicos Persistentes/efeitos adversos , Receptores de Hidrocarboneto Arílico/genética , Trifosfato de Adenosina/sangue , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/sangue , Biomarcadores/sangue , Glicemia/metabolismo , Pressão Sanguínea , Índice de Massa Corporal , Estudos de Casos e Controles , Diabetes Gestacional/sangue , Diabetes Gestacional/induzido quimicamente , Feminino , Expressão Gênica , Hemoglobinas Glicadas/genética , Hemoglobinas Glicadas/metabolismo , Humanos , Resistência à Insulina , Razão de Chances , Gravidez , Curva ROC , Espécies Reativas de Oxigênio/sangue , Receptores de Hidrocarboneto Arílico/sangue , Fatores de Risco
6.
Int J Mol Sci ; 21(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752233

RESUMO

Hepatic hepcidin is a well-known major iron regulator and has been reported to be closely related to hepatitis C virus (HCV) replication. However, pharmacological targeting of the hepcidin in HCV replication has not been reported. A short-chain fatty acid, 4-Phenyl butyrate (4-PBA), is an acid chemical chaperone that acts as a histone deacetylase inhibitor (HDACi) to promote chromosomal histone acetylation. Here, we investigated the therapeutic effect of 4-PBA on hepcidin expression and HCV replication. We used HCV genotype 1b Huh 7.5-Con1 replicon cells and engraftment of NOD/SCID mice as in vitro and in vivo models to test the effect of 4-PBA. It was found that 4-PBA inhibited HCV replication in Huh7.5-Con1 replicon cells in a concentration- and time-dependent manner through the induction of hepcidin expression by epigenetic modification and subsequent upregulation of interferon-α signaling. HCV formed a membranous web composed of double-membrane vesicles and was utilized for RNA replication. Moreover, 4-PBA also disrupted the integrity of the membranous web and interfered with the molecular interactions critical for the assembly of the HCV replication complex. These findings suggest that 4-PBA is a key epigenetic inducer of anti-HCV hepatic hepcidin and might at least in part play a role in targeting host factors related to HCV infection as an attractive complement to current HCV therapies.


Assuntos
Epigênese Genética/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepcidinas/genética , Fenilbutiratos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/prevenção & controle , Hepatite C/virologia , Hepcidinas/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Fenilbutiratos/química , Bibliotecas de Moléculas Pequenas/química , Replicação Viral/genética
7.
Arch Pharm Res ; 43(5): 553-566, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32449122

RESUMO

Parkinson's disease (PD) is a multifactorial neurodegenerative disease manifesting mitochondrial damages and neuroinflammation. Qi is defined as a natural power that can regulate the energy flow in Oriental medicine, whereas mitochondria generate energy power in Western medicine. We investigated whether Qi-enhancing component in Oriental herb medicines could activate mitochondrial activities. Quercetin was found as a major bioactive compound in most Qi-activating Oriental herb medicines through online search for active compounds in several Oriental Medicine databases. We then investigated if quercetin could reverse 1-methyl-4-phenylpyridinium (MPP+)-induced mitochondrial dysfunction and lipopolysaccharide (LPS)-induced neuroinflammation. Mitochondrial activities were monitored based on complex 1 NADH dehydrogenase activities, ATP contents, mitochondrial membrane potential, cellular/mitochondrial reactive oxygen species, and oxygen consumption rate in SH-SY5Y cells. Quercetin at concentration up to 20 µg/ml was not cytotoxic to SH-SY5Y cells. Pre-treatment with quercetin significantly protected mitochondrial damages in 1 mM MPP+- or 100 ng/ml LPS-treated cells. Quercetin increased expression levels of tyrosine hydroxylase and mitochondria controlling proteins. When in vivo effects of quercetin were assessed by immunohistochemical staining of tissue sections from LPS-injected mice brains, quercetin reduced the activation of microglia and astrocytes in the hippocampus and substantia nigra of LPS-injected mice. Our data suggest that Qi-activating quercetin might be therapeutically effective for neuroinflammation-mediated neurodegeneration by alleviating mitochondrial damages.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Qi , Quercetina/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Inflamação/metabolismo , Injeções Intraperitoneais , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Quercetina/administração & dosagem , Relação Estrutura-Atividade , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Células Tumorais Cultivadas
8.
Yonsei Med J ; 61(1): 56-63, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31887800

RESUMO

PURPOSE: Elevated aryl hydrocarbon receptor (AhR) transactivating (AHRT) activity and uremia in chronic kidney disease (CKD) may interact with each other, further complicating the disease course. In this study, we prospectively estimated serum AHRT activity using a highly sensitive cell-based AhR-dependent luciferase activity assay in CKD patients and compared differences therein according to treatment modality. MATERIALS AND METHODS: Patients undergoing peritoneal dialysis (PD) (n=22) and hemodialysis (HD) (n=38) and patients with pre-dialysis CKD stage IV or V (n=28) were included. AHRT activity and intracellular adenosine triphosphate (ATP) levels were measured. We performed a correlation analysis for AHRT activity, ATP levels, and various clinical parameters. RESULTS: AHRT activity and intracellular ATP levels were inversely correlated and differed according to treatment modalities. AHRT activity was higher in non-dialysis CKD patients than in patients undergoing dialysis and was higher in patients undergoing HD, compared to PD. AHRT activity decreased after HD treatment in HD patients. ATP levels were higher in healthy controls than in patients with pre-dialysis CKD and PD and were further decreased in patients with HD. We noted significant correlations between multiple clinical parameters associated with cardiovascular risk factors and AHRT activity. CONCLUSION: AHRT activity was elevated in CKD patients, while dialysis treatment reduced AHRT activity. Further studies are warranted to specify AHRT activity and to evaluate the precise roles thereof in patients with CKD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Diálise Renal , Insuficiência Renal Crônica/metabolismo , Ativação Transcricional , Trifosfato de Adenosina/metabolismo , Feminino , Humanos , Espaço Intracelular/metabolismo , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/fisiopatologia
9.
Neurotoxicology ; 71: 39-51, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30508555

RESUMO

α-Naphthoflavone (αNF) is a prototype flavone, also known as a modulator of aryl hydrocarbon receptor (AhR). In the present study, we investigated the molecular mechanisms of αNF-induced cytotoxic effects in HT22 mouse hippocampal neuronal cells. αNF induced apoptotic cell death via activation of caspase-12 and -3 and increased expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by treatment with the ER stress inhibitor, salubrinal, or by CHOP siRNA transfection reduced αNF-induced cell death. αNF activated mitogen-activated protein kinases (MAPKs), such as p38, JNK, and ERK, and inhibition of MAPKs reduced αNF-induced CHOP expression and cell death. αNF also induced accumulation of reactive oxygen species (ROS) and an antioxidant, N-acetylcysteine, reduced αNF-induced MAPK phosphorylation, CHOP expression, and cell death. Furthermore, αNF activated c-Src kinase, and inhibition of c-Src by a kinase inhibitor, SU6656, or siRNA transfection reduced αNF-induced ROS accumulation, MAPK activation, CHOP expression, and cell death. Inhibition of AhR by an AhR antagonist, CH223191, and siRNA transfection of AhR and AhR nuclear translocator reduced αNF-induced AhR-responsive luciferase activity, CHOP expression, and cell death. Finally, we found that inhibition of c-Src and MAPKs reduced αNF-induced transcriptional activity of AhR. Taken together, these findings suggest that αNF induces apoptosis through ER stress via c-Src-, ROS-, MAPKs-, and AhR-dependent pathways in HT22 cells.


Assuntos
Apoptose , Benzoflavonas/metabolismo , Estresse do Retículo Endoplasmático , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Espécies Reativas de Oxigênio
10.
Sci Rep ; 8(1): 15953, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374025

RESUMO

Moutan cortex, Angelica Dahurica root, and Bupleurum root are traditional herbal medicines used in Asian countries to treat various diseases caused by oxidative stress or inflammation. Parkinson's disease (PD) has been associated with mitochondrial dysfunction, but no effective treatment for mitochondrial dysfunction has yet been identified. In this study we investigated the neuroprotective effects of the triple herbal extract DA-9805 in experimental models of PD. DA-9805 was prepared by extracting three dried plant materials (Moutan cortex, Angelica Dahurica root, and Bupleurum root in a 1:1:1 mixture) with 90% ethanol on a stirring plate for 24 h at room temperature and fingerprinted using high-performance liquid chromatography. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP+), which both exert neurotoxic effects on dopaminergic neurons by inhibiting mitochondrial oxidative phosphorylation (OXPHOS) complex I, were used to make experimental models of PD. In MPP+-treated SH-SY5Y cells, DA-9805 ameliorated the suppression of tyrosine hydroxylase expression and mitochondrial damage on OXPHOS complex 1 activity, mitochondrial membrane potential, reactive oxygen species (ROS) generation, and oxygen consumption rate. In the MPTP-induced subacute PD model mice, oral administration of DA-9805 recovered dopamine content as well as bradykinesia, as determined by the rotarod test. DA-9805 protected against neuronal damage in the substantia nigra pars compacta (SNpc) and striatum. In both in vitro and in vivo models of PD, DA-9805 normalized the phosphorylation of AKT at S473 and T308 on the insulin signaling pathway and the expression of mitochondria-related genes. These results demonstrate that the triple herbal extract DA-9805 showed neuroprotective effects via alleviating mitochondria damage in experimental models of PD. We propose that DA-9805 may be a suitable candidate for disease-modifying therapeutics for PD.


Assuntos
Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Angelica/química , Angelica/metabolismo , Animais , Bupleurum/química , Bupleurum/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Paeonia/química , Paeonia/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Exp Mol Med ; 50(8): 1-13, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120245

RESUMO

An excess of reactive oxygen species (ROS) relative to the antioxidant capacity causes oxidative stress, which plays a role in the development of Parkinson's disease (PD). Because mitochondria are both sites of ROS generation and targets of ROS damage, the delivery of antioxidants to mitochondria might prevent or alleviate PD. To transduce the antioxidant protein human metallothionein 1A (hMT1A) into mitochondria, we computationally designed a cell-penetrating artificial mitochondria-targeting peptide (CAMP). The recombinant CAMP-conjugated hMT1A fusion protein (CAMP-hMT1A) successfully localized to the mitochondria. Treating a cell culture model of PD with CAMP-hMT1A restored tyrosine hydroxylase expression and mitochondrial activity and reduced ROS production. Furthermore, injection of CAMP-hMT1A into the brain of a mouse model of PD rescued movement impairment and dopaminergic neuronal degeneration. CAMP-hMT1A delivery into mitochondria might be therapeutic against PD by alleviating mitochondrial damage, and we predict that CAMP could be used to deliver other cargo proteins to the mitochondria.


Assuntos
Peptídeos Penetradores de Células/uso terapêutico , Metalotioneína/uso terapêutico , Mitocôndrias/metabolismo , Doença de Parkinson/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Sequência de Aminoácidos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Simulação por Computador , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/metabolismo , Humanos , Metalotioneína/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/patologia , Transporte Proteico , Proteínas Recombinantes de Fusão/uso terapêutico , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Environ Toxicol ; 32(12): 2455-2470, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28836330

RESUMO

The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to affect bone metabolism. We evaluated the protective effects of the triterpene glycoside actein from the herb black cohosh against TCDD-induced toxicity in MC3T3-E1 osteoblastic cells. We found that TCDD significantly reduced cell viability and increased apoptosis and autophagy in MC3T3-E1 osteoblastic cells (P < .05). In addition, TCDD treatment resulted in a significant increase in intracellular calcium concentration, mitochondrial membrane potential collapse, reactive oxygen species (ROS) production, and cardiolipin peroxidation, whereas pretreatment with actein significantly mitigated these effects (P < .05). The effects of TCDD on extracellular signal-related kinase (ERK), aryl hydrocarbon receptor, aryl hydrocarbon receptor repressor, and cytochrome P450 1A1 levels in MC3T3-E1 cells were significantly inhibited by actein. The levels of superoxide dismutase, ERK1, and nuclear factor kappa B mRNA were also effectively restored by pretreatment with actein. Furthermore, actein treatment resulted in a significant increase in alkaline phosphatase (ALP) activity and collagen content, as well as in the expression of genes associated with osteoblastic differentiation (ALP, type I collagen, osteoprotegerin, bone sialoprotein, and osterix). This study demonstrates the underlying molecular mechanisms of cytoprotection exerted by actein against TCDD-induced oxidative stress and osteoblast damage.


Assuntos
Poluentes Ambientais/toxicidade , Osteoblastos/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Cardiolipinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoprotegerina , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
13.
Sci Rep ; 7(1): 9383, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839207

RESUMO

Metabolic syndrome and mitochondrial dysfunction have been linked to elevated serum levels of persistent organic pollutants (POPs). However, it is not clear which specific POPs contribute to aryl hydrocarbon receptor (AhR)-dependent bioactivity or inhibit mitochondrial function in human subjects. Here, we measured the cumulative bioactivity of AhR ligand mixture (AhR bioactivity) and the effects on mitochondrial function (ATP concentration) in recombinant Hepa1c1c7 cells incubated with raw serum samples obtained from 911 elderly subjects in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort. Plasma concentrations of 30 POPs and plastic chemicals have previously been determined in the same PIVUS subjects. Linear regression analysis demonstrated that total toxic equivalence (TEQ) values and polychlorinated biphenyls (PCBs) were significantly correlated with AhR bioactivity (positively) and ATP concentration (negatively). Serum AhR bioactivities were positively associated with some PCBs, regardless of their dioxin-like properties, but only dioxin-like PCBs stimulated AhR bioactivity. By contrast, PCBs mediated a reduction in ATP content independently of their dioxin-like properties. This study suggests that AhR bioactivity and ATP concentrations in serum-treated cells may be valuable surrogate biomarkers of POP exposure and could be useful for the estimation of the effects of POPs on human health.


Assuntos
Mitocôndrias/metabolismo , Bifenilos Policlorados/sangue , Receptores de Hidrocarboneto Arílico/metabolismo , Trifosfato de Adenosina/sangue , Idoso , Biomarcadores , Exposição Ambiental , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/metabolismo , Suécia/epidemiologia
14.
Exp Mol Med ; 49(4): e313, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386126

RESUMO

Mitochondrial deficits or altered expressions of microRNAs are associated with the pathogenesis of various diseases, and microRNA-operated control of mitochondrial activity has been reported. Using a retrovirus-mediated short-hairpin RNA (shRNA) system, we observed that miR-24-mediated H2AX knockdown (H2AX-KD) impaired both mitochondria and the insulin signaling pathway. The overexpression of miR-24 decreased mitochondrial H2AX and disrupted mitochondrial function, as indicated by the ATP content, membrane potential and oxygen consumption. Similar mitochondrial damage was observed in shH2AX-mediated specific H2AX-KD cells. The H2AX-KD reduced the expression levels of mitochondrial transcription factor A (TFAM) and mitochondrial DNA-dependent transcripts. H2AX-KD mitochondria were swollen, and their cristae were destroyed. H2AX-KD also blocked the import of precursor proteins into mitochondria and the insulin-stimulated phosphorylation of IRS-1 (Y632) and Akt (S473 and T308). The rescue of H2AX, but not the nuclear form of ΔC24-H2AX, restored all features of miR-24- or shH2AX-mediated impairment of mitochondria. Hepatic miR-24 levels were significantly increased in db/db and ob/ob mice. A strong feedback loop may be present among miR-24, H2AX, mitochondria and the insulin signaling pathway. Our findings suggest that H2AX-targeting miR-24 may be a novel negative regulator of mitochondrial function and is implicated in the pathogenesis of insulin resistance.


Assuntos
Histonas/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , MicroRNAs/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Respiração Celular , Inativação Gênica , Histonas/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , MicroRNAs/metabolismo
15.
Mol Med Rep ; 15(6): 3871-3878, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28440430

RESUMO

Several environmental contaminants have been linked to the development of diabetes and increased diabetes­associated mortality. Perfluorooctanoic acid (PFOA) is a widely used perfluoroalkane found in surfactants and lubricants, and in processing aids used in the production of polymers. Furthermore, PFOA has been detected in humans, wildlife and the environment. The present study investigated the toxic effects of PFOA on rat pancreatic ß­cell­derived RIN­m5F cells. Cell viability, apoptosis, reactive oxygen and nitrogen species, cytokine release and mitochondrial parameters, including membrane potential collapse, reduced adenosine triphosphate levels, cardiolipin peroxidation and cytochrome c release were assessed. PFOA significantly decreased RIN­m5F cell viability and increased apoptosis. Exposure to PFOA increased the formation of reactive oxygen species, mitochondrial superoxide, nitric oxide and proinflammatory cytokines. Furthermore, PFOA induced mitochondrial membrane potential collapse and reduced adenosine triphosphate levels, cardiolipin peroxidation and cytochrome c release. These results indicate that PFOA is associated with the induction of apoptosis in RIN-m5F cells, and induces cytotoxicity via increased oxidative stress and mitochondrial dysfunction.


Assuntos
Caprilatos/farmacologia , Fluorocarbonos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caprilatos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Citocinas/metabolismo , Fluorocarbonos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-28301301

RESUMO

Tetrabromobisphenol A (TBBPA) is a well-known organobrominated flame retardant. TBBPA has been detected in the environment. The roles played by environmental pollutants in increasing the prevalence of metabolic syndrome are attracting increasing concern. In the present work, we investigated the effects of TBBPA on rat pancreatic ß-cells (the RIN-m5F cell line). RIN-m5F cells were incubated with different concentrations of TBBPA for 48 h, and cell viability and the extent of apoptosis were determined. We also measured the levels of inflammatory cytokines, reactive oxygen species (ROS), mitochondrial adenosine triphosphate (ATP), and cardiolipin, as well as the extent of cytochrome c release from mitochondria. TBBPA reduced the ATP level, induced cardiolipin peroxidation and cytochrome c release, and triggered apoptotic cell death. Moreover, TBBPA increased the levels of inflammatory cytokines (TNF-α and IL-1ß), nitric oxide, intracellular ROS, and mitochondrial superoxide. Together, our results indicate that TBBPA damages pancreatic ß-cells by triggering mitochondrial dysfunction and inducing apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Retardadores de Chama/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-28276884

RESUMO

This study was undertaken to investigate the possible involvement of oxidative stress in tetrabromobisphenol A (TBBPA)-induced toxicity in osteoblastic MC3T3-E1 cells. To examine the potential effect of TBBPA on cultured osteoblastic cells, we measured cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial parameters including adenosine triphosphate (ATP) level, cardiolipin content, cytochrome c release, cyclophilin levels, and differentiation markers in osteoblastic MC3T3-E1 cells. TBBPA exposure for 48 h caused the apoptosis and cytotoxicity of MC3T3-E1 cells. TBBPA also induced ROS and mitochondrial superoxide production in a concentration-dependent manner. These results suggest that TBBPA induces osteoblast apoptosis and ROS production, resulting in bone diseases. Moreover, TBBPA induced cardiolipin peroxidation, cytochrome c release, and decreased ATP levels which induced apoptosis or necrosis. TBBPA decreased the differentiation markers, collagen synthesis, alkaline phosphatase activity, and calcium deposition in cells. Additionally, TBBPA decreased cyclophilin A and B releases. Taken together, these data support the notion that TBBPA inhibits osteoblast function and has detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.


Assuntos
Poluentes Ambientais/toxicidade , Mitocôndrias/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia
18.
Neuroscience ; 340: 166-175, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27771535

RESUMO

Parkinson's disease (PD) is one of the progressive neurodegenerative diseases of whose condition is characterized by dopaminergic neuronal cell loss and dysfunction in the substantia nigra pars compacta (SNpc) and the striatum. Recent studies have demonstrated that the nuclear receptor-related 1 protein (Nurr1) is critical of dopaminergic phenotype induction in mesencephalic dopaminergic neurons. Further, Nurr1 engages in synthesizing and storing dopamine through regulating levels of tyrosine hydroxylase (TH), dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2). The aim of this study was to investigate the protective effects of a herbal extract combination, consisting of Bupleurum falcatum, Paeonia suffruticosa, and Angelica dahurica (MABH), on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like symptoms and to elucidate possible mechanisms of action focusing on Nurr1. In a subacute mouse model of MPTP-induced PD, MABH treatment resulted in recovery from movement impairments. MABH prevented dopamine depletion and protected against dopaminergic neuronal degradation induced by MPTP. Additionally, MABH increased Nurr1 expression in the SNpc of mice. To evaluate the effects of MABH on Nurr1 expression, we measured the protein levels of Nurr1 and its regulating factors using Western blot analysis in PC12 cells. MABH treatment induced the phosphorylation of extracellular signal-regulated kinase protein via increasing the protein expression levels of Nurr1 and ultimately the levels of TH, VMAT2, and DAT. These results indicate that MABH has protective effects on dopaminergic neurons in a mouse model of PD by regulating Nurr1.


Assuntos
Angelica , Bupleurum , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Paeonia , Extratos Vegetais/farmacologia , Animais , Dopamina/metabolismo , Expressão Gênica/efeitos dos fármacos , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Células PC12 , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Fitoterapia , Ratos
19.
Artigo em Inglês | MEDLINE | ID: mdl-27901621

RESUMO

Perfluorooctanoic acid (PFOA), a stable organic perfluorinated compound, is an emerging persistent organic pollutant, found widely in human and wildlife populations. Recent evidence suggests that exposure to environmental toxicants can be associated with higher risks of osteoporosis and fractures. We studied the cellular toxicology of PFOA in MC3T3-E1osteoblast cells. To examine the effect of PFOA, we measured cell viability, reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial parameters including adenosine triphosphate (ATP) level, mitochondrial membrane potential (MMP), cardiolipin content, and cytochrome c release in MC3T3-E1 cells. Incubating MC3T3-E1 cells in different concentrations of PFOA for 48 h resulted in a concentration-dependent decrease in cell viability and significant inductions of ROS and mitochondrial superoxide. Moreover, PFOA induced MMP collapse, cardiolipin peroxidation, cytochrome c release, and decreased ATP levels, which in turn induced apoptosis or necrosis. When osteoblast differentiation markers were assessed, PFOA treatment caused a significant reduction in alkaline phosphatase activity, collagen synthesis, and mineralization in the cells. In summary, we found an ROS- and mitochondria-mediated pathway for the induction of cell damage by PFOA in MC3T3-E1 cells. Together, our results indicate that mitochondrial toxicity could be a plausible mechanism for the toxic effects of PFOA on osteoblast function.


Assuntos
Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Stem Cells Dev ; 24(5): 575-86, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25437179

RESUMO

Human umbilical cord mesenchymal stromal cells (hUC-MSCs) of Wharton's jelly origin undergo adipogenic, osteogenic, and chondrogenic differentiation in vitro. Recent studies have consistently shown their therapeutic potential in various human disease models. However, the biological effects of major pregnancy complications on the cellular properties of hUC-MSCs remain to be studied. In this study, we compared the basic properties of hUC-MSCs obtained from gestational diabetes mellitus (GDM) patients (GDM-UC-MSCs) and normal pregnant women (N-UC-MSCs). Assessments of cumulative cell growth, MSC marker expression, cellular senescence, and mitochondrial function-related gene expression were performed using a cell count assay, senescence-associated ß-galactosidase staining, quantitative real-time reverse transcription-polymerase chain reaction, immunoblotting, and cell-based mitochondrial functional assay system. When compared with N-UC-MSCs, GDM-UC-MSCs showed decreased cell growth and earlier cellular senescence with accumulation of p16 and p53, even though they expressed similar levels of CD105, CD90, and CD73 MSC marker proteins. GDM-UC-MSCs also displayed significantly lower osteogenic and adipogenic differentiation potentials than N-UC-MSCs. Furthermore, GDM-UC-MSCs exhibited a low mitochondrial activity and significantly reduced expression of the mitochondrial function regulatory genes ND2, ND9, COX1, PGC-1α, and TFAM. Here, we report intriguing and novel evidence that maternal metabolic derangement during gestation affects the biological properties of fetal cells, which may be a component of fetal programming. Our findings also underscore the importance of the critical assessment of the biological impact of maternal-fetal conditions in biological studies and clinical applications of hUC-MSCs.


Assuntos
Diabetes Gestacional/patologia , Células-Tronco Mesenquimais/fisiologia , Mitocôndrias/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Diabetes Gestacional/metabolismo , Feminino , Expressão Gênica , Humanos , Fosforilação Oxidativa , Gravidez , Cordão Umbilical/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA