Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 992483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172364

RESUMO

Extracellular vesicles (EVs), which are generated by cell membrane budding in diverse cells, are present in variable numbers in the blood. An immunoregulatory role has been demonstrated principally for heterologous EVs, but the function of the EVs present naturally in blood remains unknown. We hypothesize that these autologous EVs might also modulate the phenotype and function of immune system cells, especially CD4+ T lymphocytes (TLs), as previously described for heterologous EVs. Several membranes and soluble immunoregulatory molecules were studied after the treatment of CD4+ TLs with autologous EVs. No direct activation was detected with autologous EVs, contrasting with the findings for heterologous EVs. However, following treatment with autologous EVs, a soluble form of CD27 (sCD27) was detected. sCD27 is strongly associated with lymphoproliferation. Autologous EVs have been shown to increase TL proliferation only after T-cell receptor (TcR) engagement due to polyclonal or specific-antigen stimulation. Our results therefore suggest that the EVs present in the blood have an immunomodulatory role different from that of heterologous EVs. These findings should be taken into account in future studies, particularly those focusing on infectious diseases, autotransfusion or doping practices.


Assuntos
Vesículas Extracelulares , Linfócitos T CD4-Positivos , Vesículas Extracelulares/metabolismo , Imunomodulação , Ativação Linfocitária , Linfócitos T
2.
Blood Adv ; 5(5): 1278-1282, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33651102

RESUMO

It is essential to limit hemolytic transfusion reactions in polytransfused individuals, and the prevention of alloimmunization is a key solution. CD4+ T lymphocyte (TL) markers, particularly follicular T helper (Tfh) cells, may differentiate between responder and nonresponder alloimmunization statuses. We tested this hypothesis by studying the phenotype of CXCR5+PD1+ TLs in whole blood. Our results suggest that high levels of CXCR5+PD1+CD4+ TLs in whole blood may be a characteristic of nonalloimmunized patients. However, these cells did not display the phenotypic characteristics of active Tfh cells. Instead, a decrease in blood quiescent Tfh-cell levels was observed in nonalloimmunized polytransfused patients. High levels of CXCR5+PD1+CD4+ TLs may be associated with inhibitory signaling functions of T cells, as reflected by the low levels of PD1+ICOS+ cells in the nonalloimmunized polytransfused group. The description of these particular phenotypes, and their comparison among groups of patients, responders, and nonresponders, suggests that new immunological components should be considered when trying to understand posttransfusion alloimmunization.


Assuntos
Anemia Falciforme , Linfócitos T Auxiliares-Indutores , Anemia Falciforme/terapia , Linfócitos T CD4-Positivos , Humanos , Fenótipo , Receptores CXCR5
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA