Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 677: 93-97, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37566922

RESUMO

This study explored the role of the Na/K-ATPase (NKA) in membrane permeabilization induced by nanosecond electric pulses. Using CRISPR/Cas9 and shRNA, we silenced the ATP1A1 gene, which encodes α1 NKA subunit in U937 human monocytes. Silencing reduced the rate and the cumulative uptake of YoPro-1 dye after electroporation by 300-ns, 7-10 kV/cm pulses, while ouabain, a specific NKA inhibitor, enhanced YoPro-1 entry. We conclude that the α1 subunit supports the electropermeabilized membrane state, by forming or stabilizing electropores or by hindering repair mechanisms, and this role is independent of NKA's ion pump function.


Assuntos
Eletricidade , Eletroporação , Humanos , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , RNA Interferente Pequeno/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769172

RESUMO

Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns-10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle). Normal epithelial cells were less sensitive than the pre-malignant ones to unipolar PEF (15-20% higher LD50, p < 0.05). Smooth muscle cells (SMC) oriented randomly in the electric field were more sensitive, with 30-40% lower LD50 (p < 0.01). Trains of ten, 300-ns pulses at 10 kV/cm caused twofold weaker electroporative uptake of YO-PRO-1 dye in normal epithelial cells than in either pre-malignant cells or in SMC oriented perpendicularly to the field. Aligning SMC with the field reduced the dye uptake fourfold, along with a twofold reduction in Ca2+ transients. A 300-ns pulse induced a twofold smaller transmembrane potential in cells aligned with the field, making them less vulnerable to electroporation. We infer that damage to SMC from nsPEF ablation of esophageal malignancies can be minimized by applying the electric field parallel to the predominant SMC orientation.


Assuntos
Carcinoma , Neoplasias Esofágicas , Humanos , Eletricidade , Potenciais da Membrana , Eletroporação , Músculo Liso , Neoplasias Esofágicas/terapia
3.
Bioelectrochemistry ; 149: 108319, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36375440

RESUMO

The reversal of the electric field direction inhibits various biological effects of nanosecond electric pulses (nsEP). This feature, known as "bipolar cancellation," enables interference targeting of nsEP bioeffects remotely from stimulating electrodes, for prospective applications such as precise cancer ablation and non-invasive deep brain stimulation. This study was undertaken to achieve the maximum cancellation of electroporation, by quantifying the impact of the pulse shape, duration, number, and repetition rate across a broad range of electric field strengths. Monolayers of endothelial cells (BPAE) were electroporated in a non-uniform electric field. Cell membrane permeabilization was quantified by YO-PRO-1 (YP) dye uptake and correlated to local electric field strength. For most conditions tested, adding an opposite polarity phase reduced YP uptake by 50-80 %. The strongest cancellation, which reduced YP uptake by 95-97 %, was accomplished by adding a 50 % second phase to 600-ns pulses delivered at a high repetition rate of 833 kHz. Strobe photography of nanosecond kinetics of membrane potential in single CHO cells revealed the temporal summation of polarization by individual unipolar nsEP applied at sub-MHz rate, leading to enhanced electroporation. In contrast, there was no summation for bipolar pulses, and increasing their repetition rate suppressed electroporation. These new findings are discussed in the context of bipolar cancellation mechanisms and remote focusing applications.


Assuntos
Eletroporação , Células Endoteliais , Cricetinae , Animais , Cricetulus , Permeabilidade da Membrana Celular , Células CHO
4.
Bioelectrochemistry ; 149: 108289, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36270049

RESUMO

The quest for safe and effective ablation resulted in the development of nanosecond pulsed electric fields (nsPEF) technology for tumor treatment. For future applications of nsPEF in urothelial cancer treatment, we evaluated the effect of urine presence at the ablation site. We prepared artificial urine (AU) with compounds commonly present in the healthy human urine at physiological concentrations. We compared nsPEF cytotoxicity for cancerous (T24) and non-cancerous (SV-HUC-1) human urothelial cell lines pulsed either in the AU or in a physiological solution (PS). Cell monolayers were exposed to trains of 300-ns, 10-Hz pulses using a two-needle electrode assembly placed orthogonal to the monolayer. The assembly produced the electric field gradually weakening with the distance from the electrodes. The electric field which killed 50 % of cells (LD50) was measured by staining with propidium iodide and matching the stained area with the simulated electric field strength. nsPEF exposure in PS was more cytotoxic to cancer cells. The AU protected both healthy and cancer urothelial cells, increasing their LD50 1.4 and 1.6 times, respectively. Omitting urea from the AU reduced the LD50 for healthy and cancer urothelial cells. Testing the role of other AU components, we found that it was the high concentration of phosphates what also rendered the protective effect of the AU. Our findings suggest that the nsPEF ablation of bladder cancer will be less efficient if the bladder is filled with urine.


Assuntos
Eletricidade , Humanos , Linhagem Celular , Propídio
5.
Sci Rep ; 12(1): 1763, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110567

RESUMO

Ablation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns-1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2-4 h, dead cells were labeled with propidium. Electroporation and cell death thresholds determined by matching the stained areas to the electric field intensity were compared to nerve excitation thresholds (Kim et al. in Int J Mol Sci 22(13):7051, 2021). The minimum fourfold ratio of cell killing and stimulation thresholds was achieved with bipolar nanosecond PEF (nsPEF), a sheer benefit over a 500-fold ratio for conventional 100-µs PEF. Increasing the bipolar nsPEF frequency up to 100 kHz within 10-pulse bursts increased ablation thresholds by < 20%. Restricting such bursts to the refractory period after nerve excitation will minimize the number of neuromuscular reactions while maintaining the ablation efficiency and avoiding heating.


Assuntos
Apoptose , Permeabilidade da Membrana Celular , Neoplasias do Colo/patologia , Estimulação Elétrica/métodos , Eletroporação/métodos , Bloqueio Neuromuscular/métodos , Animais , Relação Dose-Resposta à Radiação , Camundongos , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208945

RESUMO

Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not bipolar stimuli followed the classic strength-duration dependence. The addition of the opposite polarity phase for nsPEF increased the excitation threshold, with symmetrical bipolar nsPEF being the least efficient. Stimulation by nsPEF bursts decreased the excitation threshold as a power function above a critical duty cycle of 0.1%. The threshold reduction was much weaker for symmetrical bipolar nsPEF. Supramaximal stimulation by high-rate nsPEF bursts elicited only a single CAP as long as the burst duration did not exceed the nerve refractory period. Such brief bursts of bipolar nsPEF could be the best choice to minimize neuromuscular stimulation in ablation therapies.


Assuntos
Eletroporação/instrumentação , Fibras Nervosas/fisiologia , Potenciais de Ação , Animais , Anuros , Técnicas Eletroquímicas , Eletrodos
7.
Bioelectrochemistry ; 141: 107876, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34171507

RESUMO

Stimulation and electroporation by nanosecond electric pulses (nsEP) are distinguished by a phenomenon of bipolar cancellation, which stands for a reduced efficiency of bipolar pulses compared to unipolar ones. When two pairs of stimulating electrodes are arrayed in a quadrupole, bipolar cancellation inhibits nsEP effects near the electrodes, where the electric field is the strongest. Two properly shaped and synchronized bipolar nsEP overlay into a unipolar pulse towards the center of the electrode array, thus canceling the bipolar cancellation (a "CANCAN effect"). High efficiency of the re-created unipolar nsEP outweighs the weakening of the electric field with distance and focuses nsEP effects to the center. In monolayers of CHO, BPAE, and HEK cells, CANCAN effect achieved by the interference of two bipolar nsEP enhanced electroporation up to tenfold, with a peak at the quadrupole center. Introducing a time interval between bipolar nsEP prevented the formation of a unipolar pulse and eliminated the CANCAN effect. Strong electroporation by CANCAN stimuli killed cells over the entire area encompassed by the electrodes, whereas the time-separated pulses caused ablation only in the strongest electric field near the electrodes. The CANCAN approach is promising for uniform tumor ablation and stimulation targeting away from electrodes.


Assuntos
Estimulação Elétrica/métodos , Eletroporação/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos
8.
Bioelectrochemistry ; 140: 107837, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34004548

RESUMO

Exposure of living cells to intense nanosecond pulsed electric field (nsPEF) increases membrane permeability to small solutes, presumably by the formation of nanometer-size membrane lesions. Mechanisms responsible for the restoration of membrane integrity over the course of minutes after nsPEF have not been identified. This study explored if ESCRT-III and Annexin V calcium-dependent repair mechanisms, which play critical role in resealing large membrane lesions, are also activated by electroporation and contribute to the membrane resealing. The extent of membrane damage and the time course of resealing were monitored by the time-lapse imaging of propidium (Pr) uptake in human cervical carcinoma (HeLa) cells exposed to trains of 300-ns PEF. The removal of the extracellular Ca2+ slowed down the resealing, although did not prevent it. Recruitment of CHMP4B protein, a component of ESCRT-III complex, to the electroporated plasma membrane was not observed, thus providing no evidence for possible contribution of the macro-vesicle shedding mechanism. In contrast, silencing the AnxA5 gene impaired resealing and reduced the viability of nsPEF-treated cells. We conclude that Annexin V but not ESCRT-III was involved in the repair of HeLa cells permeabilized by 300-ns stimuli, but it was not the only and perhaps not the main repair mechanism.


Assuntos
Anexina A5/metabolismo , Permeabilidade da Membrana Celular , Eletricidade , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Animais , Células CHO , Cricetulus , Células HeLa , Humanos
9.
Bioelectrochemistry ; 136: 107598, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32711366

RESUMO

Conventional electric stimuli of micro- and millisecond duration excite or activate cells at voltages 10-100 times below the electroporation threshold. This ratio is remarkably different for nanosecond electric pulses (nsEP), which caused excitation and activation only at or above the electroporation threshold in diverse cell lines, primary cardiomyocytes, neurons, and chromaffin cells. Depolarization to the excitation threshold often results from (or is assisted by) the loss of the resting membrane potential due to ion leaks across the membrane permeabilized by nsEP. Slow membrane resealing and the build-up of electroporation damages prevent repetitive excitation by nsEP. However, peripheral nerves and muscles are exempt from this rule and withstand multiple cycles of excitation by nsEP without the loss of function or signs of electroporation. We show that the damage-free excitation by nsEP may be enabled by the membrane charging time constant sufficiently large to (1) cap the peak transmembrane voltage during nsEP below the electroporation threshold, and (2) extend the post-nsEP depolarization long enough to activate voltage-gated ion channels. The low excitatory efficacy of nsEP compared to longer pulses makes them advantageous for medical applications where the neuromuscular excitation is an unwanted side effect, such as electroporation-based cancer and tissue ablation.


Assuntos
Estimulação Elétrica , Eletroporação , Animais , Linhagem Celular , Permeabilidade da Membrana Celular , Humanos , Potenciais da Membrana
10.
Cancers (Basel) ; 11(12)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861079

RESUMO

Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of caspase-3/7 was increased fourteen-fold as compared with four-fold in EL-4 cells. Moreover, while nsPEF treatments induced the release of the ICD hallmark HMGB1 in both cell lines, extracellular ATP was detected only in CT-26. Finally, in vaccination assays, CT-26 cells treated with nsPEF or doxorubicin equally impaired the growth of tumors at challenge sites eliciting a protective anticancer immune response in 78% and 80% of the animals, respectively. As compared to CT-26, both nsPEF- and mitoxantrone-treated EL-4 cells had a less pronounced effect and protected 50% and 20% of the animals, respectively. These results support our conclusion that nsPEF induce ER stress, accompanied by bona fide ICD.

11.
Biochem Biophys Res Commun ; 518(4): 759-764, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31472962

RESUMO

Intense nanosecond pulsed electric field (nsPEF) is a novel modality for cell activation and nanoelectroporation. Applications of nsPEF in research and therapy are hindered by a high electric field requirement, typically from 1 to over 50 kV/cm to elicit any bioeffects. We show how this requirement can be overcome by engaging temporal summation when pulses are compressed into high-rate bursts (up to several MHz). This approach was tested for excitation of ventricular cardiomyocytes and peripheral nerve fibers; for membrane electroporation of cardiomyocytes, CHO, and HEK cells; and for killing EL-4 cells. MHz compression of nsPEF bursts (100-1000 pulses) enables excitation at only 0.01-0.15 kV/cm and electroporation already at 0.4-0.6 kV/cm. Clear separation of excitation and electroporation thresholds allows for multiple excitation cycles without membrane disruption. The efficiency of nsPEF bursts increases with the duty cycle (by increasing either pulse duration or repetition rate) and with increasing the total time "on" (by increasing either pulse duration or number). For some endpoints, the efficiency of nsPEF bursts matches a single "long" pulse whose amplitude and duration equal the time-average amplitude and duration of the bursts. For other endpoints this rule is not valid, presumably because of nsPEF-specific bioeffects and/or possible modification of targets already during the burst. MHz compression of nsPEF bursts is a universal and efficient way to lower excitation thresholds and facilitate electroporation.


Assuntos
Potenciais de Ação/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Eletroporação/métodos , Miócitos Cardíacos/fisiologia , Fibras Nervosas/fisiologia , Animais , Células CHO , Cálcio , Linhagem Celular Tumoral , Células Cultivadas , Cricetulus , Estimulação Elétrica/métodos , Células HEK293 , Humanos , Camundongos Endogâmicos DBA , Miócitos Cardíacos/citologia , Rana catesbeiana/fisiologia , Fatores de Tempo
12.
Sci Rep ; 9(1): 431, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674926

RESUMO

Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20-200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such as necroptosis and autophagy. Our results point at necrosis as the primary mechanism of cell death induced by nsPEF in B16F10 cells. We finally compared the antitumor immunity in animals treated with nsPEF (750, 200-ns, 25 kV/cm, 2 Hz) with animals were tumors were surgically removed. Compared to the naïve group where all animals developed tumors, nsPEF and surgery protected 33% (6/18) and 28.6% (4/14) of the animals, respectively. Our data suggest that, under our experimental conditions, the local ablation by nsPEF restored but did not boost the natural antitumor immunity which stays dormant in the tumor-bearing host.


Assuntos
Apoptose/imunologia , Terapia por Estimulação Elétrica , Melanoma Experimental , Animais , Linhagem Celular Tumoral , Feminino , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Necroptose
13.
Bioelectrochemistry ; 121: 135-141, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29413863

RESUMO

Decreasing the time gap between two identical electric pulses is expected to render bioeffects similar to those of a single pulse of equivalent total duration. In this study, we show that it is not necessarily true, and that the effects vary for different permeabilization markers. We exposed individual CHO or NG108 cells to one 300-ns pulse (3.7-11.6 kV/cm), or a pair of such pulses (0.4-1000 µs interval), or to a single 600-ns pulse of the same amplitude. Electropermeabilization was evaluated (a) by the uptake of YO-PRO-1 (YP) dye; (b) by the amplitude of elicited Ca2+ transients, and (c) by the entry of Tl+ ions. For YP uptake, applying a 600-ns pulse or a pair of 300-ns pulses doubled the effect of a single 300-ns pulse; this additive effect did not depend on the time interval between pulses or the electric field, indicating that already permeabilized cells are as susceptible to electropermeabilization as naïve cells. In contrast, Ca2+ transients and Tl+ uptake increased in a supra-additive fashion when two pulses were delivered instead of one. Paired pulses at 3.7 kV/cm with minimal separation (0.4 and 1 µs) elicited 50-100% larger Ca2+ transients than either a single 600-ns pulse or paired pulses with longer separation (10-1000 µs). This paradoxically high efficiency of the closest spaced pulses was emphasized when Ca2+ transients were elicited in a Ca2+-free solution (when the endoplasmic reticulum (ER) was the sole significant source of Ca2+), but was eliminated by Ca2+ depletion from the ER and was not observed for Tl+ entry through the electropermeabilized membrane. We conclude that closely spaced paired pulses specifically target ER, by either permeabilizing it to a greater extent than a single double-duration pulse thus causing more Ca2+ leak, or by amplifying Ca2+-induced Ca2+ release by an unknown mechanism.


Assuntos
Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos/métodos , Eletroporação/métodos , Corantes Fluorescentes/farmacocinética , Compostos de Quinolínio/farmacocinética , Tálio/farmacocinética , Animais , Benzoxazóis/administração & dosagem , Benzoxazóis/farmacocinética , Células CHO , Cálcio/metabolismo , Linhagem Celular Tumoral , Cricetulus , Corantes Fluorescentes/administração & dosagem , Compostos de Quinolínio/administração & dosagem , Ratos , Tálio/administração & dosagem
14.
Sci Rep ; 7(1): 10992, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887559

RESUMO

We demonstrate that conditioning of mammalian cells by electroporation with nanosecond pulsed electric field (nsPEF) facilitates their response to the next nsPEF treatment. The experiments were designed to unambiguously separate the electroporation-induced sensitization and desensitization effects. Electroporation was achieved by bursts of 300-ns, 9 kV/cm pulses (50 Hz, n = 3-100) and quantified by propidium dye uptake within 11 min after the nsPEF exposure. We observed either sensitization to nsPEF or no change (when the conditioning was either too weak or too intense, or when the wait time after conditioning was too short). Within studied limits, conditioning never caused desensitization. With settings optimal for sensitization, the second nsPEF treatment became 2.5 times (25 °C) or even 6 times (37 °C) more effective than the same nsPEF treatment delivered without conditioning. The minimum wait time required for sensitization development was 30 s, with still longer delays increasing the effect. We show that the delayed hypersensitivity was not mediated by either cell swelling or oxidative effect of the conditioning treatment; biological mechanisms underlying the delayed electrosensitization remain to be elucidated. Optimizing nsPEF delivery protocols to induce sensitization can reduce the dose and adverse side effects of diverse medical treatments which require multiple pulse applications.


Assuntos
Eletroporação , Hipersensibilidade Tardia/etiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Hipersensibilidade Tardia/metabolismo , Metabolismo dos Lipídeos , Oxirredução , Temperatura
15.
Technol Cancer Res Treat ; 16(6): 987-996, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28585492

RESUMO

Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors in mice. Nanosecond pulsed electric field ablations were produced using a 2-needle probe with a 6.5-mm interelectrode distance. In agarose gel, splitting a pulsed electric field dose of 300, 300-ns pulses (20 Hz, 4.4-6.4 kV) in 2 equal fractions increased cell death up to 3-fold compared to single-train treatments. We then compared the antitumor effectiveness of these treatments in vivo. At 24 hours after treatment, sensitizing tumors by a split-dose pulsed electric field exposure (150 + 150, 300-ns pulses, 20 Hz, 6.4 kV) caused a 4- and 2-fold tumor volume reduction as compared to sham and single-train treatments, respectively. Tumor volume reduction that exceeds 75% was 43% for split-dose-treated animals compared to only 12% for single-dose treatments. The difference between the 2 experimental groups remained statistically significant for at least 1 week after the treatment. The results show that electrosensitization occurs in vivo and can be exploited to assist in vivo cancer ablation.

16.
J Membr Biol ; 250(2): 217-224, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28243693

RESUMO

Electric pulses of nanosecond duration (nsEP) are emerging as a new modality for tissue ablation. Plasma membrane permeabilization by nsEP may cause osmotic imbalance, water uptake, cell swelling, and eventual membrane rupture. The present study was aimed to increase the cytotoxicity of nsEP by fostering water uptake and cell swelling. This aim was accomplished by lowering temperature after nsEP application, which delayed the membrane resealing and/or suppressed the cell volume mechanisms. The cell diameter in U-937 monocytes exposed to a train of 50, 300-ns pulses (100 Hz, 7 kV/cm) at room temperature and then incubated on ice for 30 min increased by 5.6 +/- 0.7 µm (40-50%), which contrasted little or no changes (1 +/- 0.3 µm, <10%) if the incubation was at 37 °C. Neither this nsEP dose nor the 30-min cooling caused cell death when applied separately; however, their combination reduced cell survival to about 60% in 1.5-3 h. Isosmotic addition of a pore-impermeable solute (sucrose) to the extracellular medium blocked cell swelling and rescued the cells, thereby pointing to swelling as a primary cause of membrane rupture and cell death. Cooling after nsEP exposure can potentially be employed in medical practice to assist tissue and tumor ablation.


Assuntos
Temperatura Baixa , Eletroporação , Morte Celular/fisiologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/fisiologia , Tamanho Celular , Sobrevivência Celular/fisiologia , Humanos
17.
Cell Mol Life Sci ; 74(9): 1741-1754, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27986976

RESUMO

Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.


Assuntos
Eletricidade , Eletroporação/métodos , Morte Celular , Linhagem Celular , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Núcleo Celular/metabolismo , Proliferação de Células , Forma Celular , Tamanho Celular , Sobrevivência Celular , Humanos , Fatores de Tempo
18.
Med Biol Eng Comput ; 55(7): 1063-1072, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27177544

RESUMO

An exposure system adapted for use on a microscope stage was constructed for studying the effects of high electric field, subnanosecond pulses on biological cells. The system has a bandpass of 3 GHz and is capable of delivering high-voltage electric pulses (6.2 kV) to the electrodes, which are two tungsten rods (100 µm in diameter) in parallel with a gap distance of 170 µm. Electric pulses are delivered to the electrodes through a π network, which serves as an attenuator as well as an impedance matching unit to absorb the reflection at the electrodes. By minimizing the inductance of the pulse delivery system, it was possible to generate electric fields of up to 200 kV/cm with a pulse duration of 500 ps at the surface of the cover slip under the microscope. The electric field at the cover slip was found to be homogenous over an area of 50-70 µm. Within this area, neuroblastoma cells placed on the cover slip were studied with respect to membrane potential changes caused by subnanosecond pulses. This allowed us, for the first time, to demonstrate depolarization of the cell membrane potential.


Assuntos
Eletricidade , Animais , Linhagem Celular Tumoral , Eletrodos , Potenciais da Membrana , Camundongos , Ratos
19.
Sci Rep ; 6: 36835, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833151

RESUMO

Electroporation by nanosecond electric pulses (nsEP) is an emerging modality for tumor ablation. Here we show the efficient induction of apoptosis even by a non-toxic nsEP exposure when it is followed by a 30-min chilling on ice. This chilling itself had no impact on the survival of U-937 or HPAF-II cells, but caused more than 75% lethality in nsEP-treated cells (300 ns, 1.8-7 kV/cm, 50-700 pulses). The cell death was largely delayed by 5-23 hr and was accompanied by a 5-fold activation of caspase 3/7 (compared to nsEP without chilling) and more than 60% cleavage of poly-ADP ribose polymerase (compared to less than 5% in controls or after nsEP or chilling applied separately). When nsEP caused a transient permeabilization of 83% of cells to propidium iodide, cells placed at 37 °C resealed in 10 min, whereas 60% of cells placed on ice remained propidium-permeable even in 30 min. The delayed membrane resealing caused cell swelling, which could be blocked by an isosmotic addition of a pore-impermeable solute (sucrose). However, the block of swelling did not prevent the delayed cell death by apoptosis. The potent enhancement of nsEP cytotoxicity by subsequent non-damaging chilling may find applications in tumor ablation therapies.


Assuntos
Apoptose , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Tamanho Celular , Temperatura Baixa , Eletroporação , Ativação Enzimática , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo
20.
Sci Rep ; 6: 23225, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26987779

RESUMO

Previous studies reported a delayed increase of sensitivity to electroporation (termed "electrosensitization") in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300-600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400-600 V (2.9-4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2-3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency.


Assuntos
Carcinoma de Células Escamosas/patologia , Técnicas de Cultura de Células/métodos , Eletroporação/métodos , Técnicas de Ablação , Animais , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular , Fenômenos Eletromagnéticos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA