Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 97: 103024, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33302090

RESUMO

Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recognition is accomplished in two ATP-dependent steps. In the first step, the UvrAB complex samples the DNA in search of lesion. Subsequently, the presence of DNA damage is verified within the UvrB-DNA complex after UvrA has dissociated. Although the mechanism of bacterial NER damage detection has been extensively investigated, the role of ATP binding and hydrolysis by UvrA and UvrB during this process remains incompletely understood. Here, we report a pre-steady state kinetics Förster resonance energy transfer (FRET) study of the real-time interaction between UvrA, UvrB, and damaged DNA during lesion detection. By using UvrA and UvrB mutants harboring site-specific mutations in the ATP binding sites, we show for the first time that the dissociation of UvrA from the UvrAB-DNA complex does not require ATP hydrolysis by UvrB. We find that ATP hydrolysis by UvrA is not essential, but somehow facilitates the formation of UvrB-DNA complex, with ATP hydrolysis at the proximal site of UvrA playing a more critical role. Consistent with previous reports, our results indicated that the ATPase activity of UvrB is essential for the formation of UvrB-DNA complex but is not required for the binding of the UvrAB complex to DNA.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/genética , Hidrólise , Cinética
2.
Nat Biomed Eng ; 4(12): 1140-1149, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32848209

RESUMO

Nucleic acid detection by isothermal amplification and the collateral cleavage of reporter molecules by CRISPR-associated enzymes is a promising alternative to quantitative PCR. Here, we report the clinical validation of the specific high-sensitivity enzymatic reporter unlocking (SHERLOCK) assay using the enzyme Cas13a from Leptotrichia wadei for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the virus that causes coronavirus disease 2019 (COVID-19)-in 154 nasopharyngeal and throat swab samples collected at Siriraj Hospital, Thailand. Within a detection limit of 42 RNA copies per reaction, SHERLOCK was 100% specific and 100% sensitive with a fluorescence readout, and 100% specific and 97% sensitive with a lateral-flow readout. For the full range of viral load in the clinical samples, the fluorescence readout was 100% specific and 96% sensitive. For 380 SARS-CoV-2-negative pre-operative samples from patients undergoing surgery, SHERLOCK was in 100% agreement with quantitative PCR with reverse transcription. The assay, which we show is amenable to multiplexed detection in a single lateral-flow strip incorporating an internal control for ribonuclease contamination, should facilitate SARS-CoV-2 detection in settings with limited resources.


Assuntos
COVID-19/diagnóstico , Proteínas Associadas a CRISPR/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Leptotrichia/enzimologia , Pandemias/prevenção & controle
3.
Chem Biol Drug Des ; 91(1): 116-125, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28649747

RESUMO

Cisplatin resistance is caused, in part, by the efficient removal of the helix-distorting cisplatin 1,2-intrastrand cross-links by nucleotide excision repair (NER) machinery. To make a platinum-DNA adduct that causes less helical distortion than the cisplatin 1,2-intrastrand adduct, we designed and synthesized a monofunctional platinum-carbazole conjugate (carbazoplatin). The 2.5 Å crystal structure of carbazoplatin-DNA adduct revealed both the monoplatination of the N7 of a guanine (G) base and the intercalation into two G:C base pairs, while causing a minor distortion of the DNA helix. A 50-mer dsDNA containing a single carbazoplatin lesion was poorly processed by UvrABC endonuclease, the prokaryotic NER machinery that detects helical distortion and performs dual incision around the lesion. Our cell viability assay indicated that the cytotoxic pathways of carbazoplatin might be different from those of cisplatin; carbazoplatin was 5-8 times more cytotoxic than cisplatin against PANC-1 and MDA-MB-231 cancer cell lines.


Assuntos
Antineoplásicos/síntese química , Carbazóis/química , Platina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Adutos de DNA/química , Dano ao DNA/efeitos dos fármacos , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Desenho de Fármacos , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
4.
DNA Repair (Amst) ; 51: 60-69, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28209516

RESUMO

Nucleotide excision repair (NER) is distinguished from other DNA repair pathways by its ability to process various DNA lesions. In bacterial NER, UvrA is the key protein that detects damage and initiates the downstream NER cascade. Although it is known that UvrA preferentially binds to damaged DNA, the mechanism for damage recognition is unclear. A ß-hairpin in the third Zn-binding module (Zn3hp) of UvrA has been suggested to undergo a conformational change upon DNA binding, and proposed to be important for damage sensing. Here, we investigate the contribution of the dynamics in the Zn3hp structural element to various activities of UvrA during the early steps of NER. By restricting the movement of the Zn3hp using disulfide crosslinking, we showed that the movement of the Zn3hp is required for damage-specific binding, UvrB loading and ATPase activities of UvrA. We individually inactivated each of the nucleotide binding sites in UvrA to investigate its role in the movement of the Zn3hp. Our results suggest that the conformational change of the Zn3hp is controlled by ATP hydrolysis at the distal nucleotide binding site. We propose a bi-phasic damage inspection model of UvrA in which movement of the Zn3hp plays a key role in damage recognition.


Assuntos
Adenosina Trifosfatases/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Dedos de Zinco , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/metabolismo , Hidrólise , Movimento , Estrutura Terciária de Proteína
5.
Proteins ; 81(1): 132-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22933319

RESUMO

The UvrA-UvrB (AB) protein complex operates in the bacterial nucleotide excision repair pathway as the main sensor of DNA damage. Crystallographic analysis of the AB complex revealed a linear UvrB-UvrA-UvrA-UvrB arrangement of subunits with an internal two-fold axis that became incorporated into the crystal. Here, we have used small-angle X-ray scattering (SAXS) to show close correspondence between the crystal structure and the entity in solution. This result confirms the number and disposition of subunits in the crystallographic model and rules out other possible arrangements suggested by packing in the crystal. The current SAXS analysis failed to detect significant changes to the structure as a function of nucleotide.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Dano ao DNA , DNA Helicases/química , Proteínas de Ligação a DNA/química , Adenosina Trifosfatases/análise , Proteínas de Bactérias/análise , DNA Helicases/análise , Reparo do DNA , Proteínas de Ligação a DNA/análise , Modelos Moleculares , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
6.
Nat Struct Mol Biol ; 19(3): 291-8, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22307053

RESUMO

Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexus of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.


Assuntos
Adenosina Trifosfatases/química , Dano ao DNA , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Geobacillus stearothermophilus/enzimologia , Conformação de Ácido Nucleico , Adenosina Trifosfatases/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Geobacillus stearothermophilus/genética , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína
7.
Mol Cell ; 29(1): 122-33, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18158267

RESUMO

The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.2 A structure of UvrA from Bacillus stearothermophilus, we observe that the nucleotide-binding sites are formed in an intramolecular fashion and are not at the dimer interface as is typically found in other ABC ATPases. UvrA also harbors two unique domains; we show that one of these is required for interaction with UvrB, its partner in lesion recognition. In addition, UvrA contains three zinc modules, the number and ligand sphere of which differ from previously published models. Structural analysis, biochemical experiments, surface electrostatics, and sequence conservation form the basis for models of ATP-modulated dimerization, UvrA-UvrB interaction, and DNA binding during the search for lesions.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Cristalografia por Raios X , DNA Helicases/química , Reparo do DNA , Proteínas de Ligação a DNA/química , Endodesoxirribonucleases/química , Geobacillus stearothermophilus/enzimologia , Mapeamento de Interação de Proteínas , Difosfato de Adenosina/química , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Endodesoxirribonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Eletricidade Estática , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA