Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 534705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488570

RESUMO

Retinoic acid inducible gene I (RIG-I) is associated to the DExD/H box RNA helicases. It is a pattern recognition receptor (PRR), playing a crucial role in the system and is a germ line encoded host sensor to perceive pathogen-associated molecular patterns (PAMPs). So far, reports are available for the role of RIG-I in antiviral immunity. This is the first report in which we have documented the role of RIG-I in parasitic immunity. Haemonchus contortus is a deadly parasite affecting the sheep industry, which has a tremendous economic importance, and the parasite is reported to be prevalent in the hot and humid agroclimatic region. We characterize the RIG-I gene in sheep (Ovis aries) and identify the important domains or binding sites with Haemonchus contortus through in silico studies. Differential mRNA expression analysis reveals upregulation of the RIG-I gene in the abomasum of infected sheep compared with that of healthy sheep, further confirming the findings. Thus, it is evident that, in infected sheep, expression of RIG-I is triggered for binding to more pathogens (Haemonchus contortus). Genetically similar studies with humans and other livestock species were conducted to reveal that sheep may be efficiently using a model organism for studying the role of RIG-I in antiparasitic immunity in humans.


Assuntos
Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica/imunologia , Hemoncose , Haemonchus/imunologia , Doenças dos Ovinos , Carneiro Doméstico , Animais , Hemoncose/imunologia , Hemoncose/veterinária , Humanos , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologia , Carneiro Doméstico/imunologia , Carneiro Doméstico/parasitologia
2.
Theriogenology ; 119: 121-130, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006127

RESUMO

Cytochrome B is an important polypeptide of the mitochondria helpful in energy metabolism through oxidative phosphorylation. Cytochrome B plays an immense role in the reproduction of animals and due to its mutation prone nature, it can affect the basic physiology of animals. Cytochrome B affects reproductive system in males and equally plays an important role in transferring and providing energy in the development of the embryo, zygote, and oocytes precisely in females. The present study was conducted on Ghungroo pig to study their molecular and reproductive traits and the effect of the cytochrome B gene in the female reproduction of the Ghungroo pig. Although studies are available for cytochrome B gene analysis for evolutionary studies through phylogenetic analysis. This is the first report for the study of Cytochrome B gene on reproduction in pigs. Cytochrome B gene was sequenced and seven SNPs were observed out of which three were non-synonymous. INDEL mutation was detected in Variant B which had lead to Frame Shift mutation resulting in a stop codon AGA. The effect in the reproductive traits of the sow was studied due to the occurrence of nucleotide substitution. Bioinformatics analysis (I-mutant, PROVEAN, and SIFT) had revealed that the mutations were deleterious for the mutant type. Mutation leading to alterations in post-translational modification sites as phosphorylation site, leucine-rich nuclear export signal, occurrence of transmembrane helices, arginine and lysine peptide cleavage site for the mutant variant had resulted in a reduced physiological response. 3 D protein structure, (predicted through bioinformatics analysis) for cytochrome B has revealed distinct structural differences in mutated form with truncated protein by RMSD analysis through TM-Align software. Associated studies of genotype variants with reproductive traits have revealed the significant effect of variants of cytochrome B gene on reproductive traits namely litter size at first, second and third furrowing, piglet mortality, age at first furrowing and furrowing interval. Mitochondrial gene as Cytochrome B variants might be used as a marker for studying female reproduction of Ghungroo sow in future.


Assuntos
Citocromos b/genética , Polimorfismo de Nucleotídeo Único , Suínos/genética , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Marcadores Genéticos , Modelos Moleculares , Gravidez , Conformação Proteica , Processamento de Proteína Pós-Traducional , Suínos/fisiologia
3.
Mol Biol Int ; 2011: 507346, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22132326

RESUMO

CD14 is an important molecule for innate immunity that can act against a wide range of pathogens. The present paper has characterized CD14 gene of crossbred (CB) cattle (Bos indicus×Bos taurus). Cloning and sequence analysis of CD14 cDNA revealed 1119 nucleotide long open reading frame encoding 373 amino acids protein and 20 amino acids signal peptide. CB cattle CD14 gene exhibited a high percentage of nucleotide identity (59.3-98.1%) with the corresponding mammalian homologs. Cattle and buffalo appear to have diverged from a common ancestor in phylogenetic analysis. 25 SNPs with 17 amino acid changes were newly reported and the site for mutational hot-spot was detected in CB cattle CD14 gene. Non-synonymous substitutions exceeding synonymous substitutions indicate the evolution of this protein through positive selection among domestic animals. Predicted protein structures obtained from deduced amino acid sequence indicated CB cattle CD14 molecule to be a receptor with horse shoe-shaped structure. The sites for LPS binding, LPS signalling, leucine-rich repeats, putative N-linked glycosylation, O-linked glycosylation, glycosyl phosphatidyl inositol anchor, disulphide bridges, alpha helix, beta strand, leucine rich nuclear export signal, leucine zipper and domain linker were predicted. Most of leucine and cysteine residues remain conserved across the species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA