Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Dev Cell ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781975

RESUMO

The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.

2.
Cell Rep ; 43(3): 113831, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38401121

RESUMO

Cancer immunotherapies have demonstrated remarkable success; however, the majority of patients do not respond or develop resistance. Here, we conduct epigenetic gene-targeted CRISPR-Cas9 screens to identify epigenomic factors that limit CD8+ T cell-mediated anti-tumor immunity. We identify that PRMT1 suppresses interferon gamma (Ifnγ)-induced MHC-I expression, thus dampening CD8+ T cell-mediated killing. Indeed, PRMT1 knockout or pharmacological targeting of type I PRMT with the clinical inhibitor GSK3368715 enhances Ifnγ-induced MHC-I expression through elevated STAT1 expression and activation, while re-introduction of PRMT1 in PRMT1-deficient cells reverses this effect. Importantly, loss of PRMT1 enhances the efficacy of anti-PD-1 immunotherapy, and The Cancer Genome Atlas analysis reveals that PRMT1 expression in human melanoma is inversely correlated with expression of human leukocyte antigen molecules, infiltration of CD8+ T cells, and overall survival. Taken together, we identify PRMT1 as a negative regulator of anti-tumor immunity, unveiling clinical type I PRMT inhibitors as immunotherapeutic agents or as adjuncts to existing immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Linfócitos T CD8-Positivos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunidade Celular , Interferon gama/metabolismo , Melanoma/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37957015

RESUMO

Deregulation of the Hippo pathway is a driver for cancer progression and treatment resistance. In the context of gastric cancer, YAP1 is a biomarker for poor patient prognosis. Although genomic tumor profiling provides information of Hippo pathway activation, the present study demonstrates that inhibition of Yap1 activity has anti-tumor effects in gastric tumors driven by oncogenic mutations and inflammatory cytokines. We show that Yap1 is a key regulator of cell metabolism, proliferation, and immune responses in normal and neoplastic gastric epithelium. We propose that the Hippo pathway is targetable across gastric cancer subtypes and its therapeutic benefits are likely to be mediated by both cancer cell-intrinsic and -extrinsic mechanisms.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Hippo , Fator de Transcrição STAT3/metabolismo
4.
Nat Commun ; 14(1): 6872, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898600

RESUMO

Although gastric cancer is a leading cause of cancer-related deaths, systemic treatment strategies remain scarce. Here, we report the pro-tumorigenic properties of the crosstalk between intestinal tuft cells and type 2 innate lymphoid cells (ILC2) that is evolutionarily optimized for epithelial remodeling in response to helminth infection. We demonstrate that tuft cell-derived interleukin 25 (IL25) drives ILC2 activation, inducing the release of IL13 and promoting epithelial tuft cell hyperplasia. While the resulting tuft cell - ILC2 feed-forward circuit promotes gastric metaplasia and tumor formation, genetic depletion of tuft cells or ILC2s, or therapeutic targeting of IL13 or IL25 alleviates these pathologies in mice. In gastric cancer patients, tuft cell and ILC2 gene signatures predict worsening survival in intestinal-type gastric cancer where ~40% of the corresponding cancers show enriched co-existence of tuft cells and ILC2s. Our findings suggest a role for ILC2 and tuft cells, along with their associated cytokine IL13 and IL25 as gatekeepers and enablers of metaplastic transformation and gastric tumorigenesis, thereby providing an opportunity to therapeutically inhibit early-stage gastric cancer through repurposing antibody-mediated therapies.


Assuntos
Imunidade Inata , Neoplasias Gástricas , Humanos , Camundongos , Animais , Interleucina-13/metabolismo , Neoplasias Gástricas/patologia , Linfócitos/metabolismo , Hiperplasia/metabolismo , Metaplasia/metabolismo
5.
Sci Immunol ; 8(88): eadf2163, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801516

RESUMO

Intraepithelial lymphocytes (IELs), including αß and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.


Assuntos
Neoplasias Colorretais , Linfócitos Intraepiteliais , Camundongos , Humanos , Animais , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta , Intestino Delgado , Epitélio
6.
Clin Transl Med ; 13(9): e1356, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691350

RESUMO

BACKGROUND: Malignant pleural effusions (MPEs) are a common complication of advanced cancers, particularly those adjacent to the pleura, such as lung and breast cancer. The pathophysiology of MPE formation remains poorly understood, and although MPEs are routinely used for the diagnosis of breast cancer patients, their composition and biology are poorly understood. It is difficult to distinguish invading malignant cells from resident mesothelial cells and to identify the directionality of interactions between these populations in the pleura. There is a need to characterize the phenotypic diversity of breast cancer cell populations in the pleural microenvironment, and investigate how this varies across patients. METHODS: Here, we used single-cell RNA-sequencing to study the heterogeneity of 10 MPEs from seven metastatic breast cancer patients, including three Miltenyi-enriched samples using a negative selection approach. This dataset of almost 65 000 cells was analysed using integrative approaches to compare heterogeneous cell populations and phenotypes. RESULTS: We identified substantial inter-patient heterogeneity in the composition of cell types (including malignant, mesothelial and immune cell populations), in expression of subtype-specific gene signatures and in copy number aberration patterns, that captured variability across breast cancer cell populations. Within individual MPEs, we distinguished mesothelial cell populations from malignant cells using key markers, the presence of breast cancer subtype expression patterns and copy number aberration patterns. We also identified pleural mesothelial cells expressing a cancer-associated fibroblast-like transcriptomic program that may support cancer growth. CONCLUSIONS: Our dataset presents the first unbiased assessment of breast cancer-associated MPEs at a single cell resolution, providing the community with a valuable resource for the study of MPEs. Our work highlights the molecular and cellular diversity captured in MPEs and motivates the potential use of these clinically relevant biopsies in the development of targeted therapeutics for patients with advanced breast cancer.


Assuntos
Neoplasias da Mama , Derrame Pleural , Humanos , Feminino , Neoplasias da Mama/genética , Biópsia , Fenótipo , Análise de Sequência de RNA , Microambiente Tumoral/genética
7.
Cancer Med ; 12(12): 13522-13537, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148543

RESUMO

BACKGROUND: Monepantel is an anti-helminthic drug that also has anti-cancer properties. Despite several studies over the years, the molecular target of monepantel in mammalian cells is still unknown, and its mechanism-of-action is not fully understood, though effects on cell cycle, mTOR signalling and autophagy have been implicated. METHODS: Viability assays were performed on >20 solid cancer cell cells, and apoptosis assays were performed on a subset of these, including 3D cultures. Genetic deletion of BAX/BAK and ATG were used to establish roles of apoptosis and autophagy in killing activity. RNA-sequencing was performed on four cell lines after monepantel treatment, and differentially regulated genes were confirmed by Western blotting. RESULTS: We showed that monepantel has anti-proliferative activity on a broad range of cancer cell lines. In some, this was associated with induction of apoptosis which was confirmed using a BAX/BAK-deficient cell line. However, proliferation is still inhibited in these cells following monepantel treatment, indicating cell-cycle disruption as the major anti-cancer effect. Previous studies have also indicated autophagic cell death occurs following monepantel treatment. We showed autophagy induction in multiple cell lines; however, deletion of a key autophagy regulator ATG7 had minimal impact on monepantel's anti-proliferative activity, suggesting autophagy is associated with, but not required for its anti-tumour effects. Transcriptomic analysis of four cell lines treated with monepantel revealed downregulation of many genes involved in the cell cycle, and upregulation of genes linked to ATF4-mediated ER stress responses, especially those involved in amino-acid metabolism and protein synthesis. CONCLUSIONS: As these outcomes are all associated with mTOR signalling, cell cycle and autophagy, we now provide a likely triggering mechanism for the anti-cancer activity of monepantel.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias , Animais , Humanos , Proteína X Associada a bcl-2 , Neoplasias/tratamento farmacológico , Neoplasias/genética , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Mamíferos/metabolismo
8.
Cancers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626009

RESUMO

The development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy. Here, we generated a series of predictive gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-approved drugs or compounds in early development. To achieve this, we used a cell line-based drug screen with matched transcriptomic data to derive in silico models that we validated in large independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our study foreshadows an effective delivery approach for precision medicine.

9.
Sci Data ; 9(1): 96, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322042

RESUMO

Breast cancer is a common and highly heterogeneous disease. Understanding cellular diversity in the mammary gland and its surrounding micro-environment across different states can provide insight into cancer development in the human breast. Recently, we published a large-scale single-cell RNA expression atlas of the human breast spanning normal, preneoplastic and tumorigenic states. Single-cell expression profiles of nearly 430,000 cells were obtained from 69 distinct surgical tissue specimens from 55 patients. This article extends the study by providing quality filtering thresholds, downstream processed R data objects, complete cell annotation and R code to reproduce all the analyses. Data quality assessment measures are presented and details are provided for all the bioinformatic analyses that produced results described in the study.


Assuntos
Neoplasias da Mama , Análise de Sequência de RNA , Análise de Célula Única , Neoplasias da Mama/genética , Biologia Computacional , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Humanos , Microambiente Tumoral , Sequenciamento do Exoma
10.
Nat Commun ; 12(1): 6920, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836954

RESUMO

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.


Assuntos
Medula Óssea , Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Mamárias Animais , Metástase Neoplásica , Microambiente Tumoral , Animais , Medula Óssea/diagnóstico por imagem , Medula Óssea/cirurgia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Neoplasias da Mama/cirurgia , Progressão da Doença , Fator Estimulador de Colônias de Granulócitos , Humanos , Imageamento Tridimensional , Camundongos , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/terapia , Segunda Neoplasia Primária , Receptores de Fator Estimulador de Colônias
11.
Sci Adv ; 7(28)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233875

RESUMO

Intratumoral heterogeneity is a driver of breast cancer progression, but the nature of the clonal interactive network involved in this process remains unclear. Here, we optimized the use of optical barcoding to visualize and characterize 31 cancer subclones in vivo. By mapping the clonal composition of thousands of metastases in two clinically relevant sites, the lungs and liver, we found that metastases were highly polyclonal in lungs but not in the liver. Furthermore, the transcriptome of the subclones varied according to their metastatic niche. We also identified a reversible niche-driven signature that was conserved in lung and liver metastases collected during patient autopsies. Among this signature, we found that the tumor necrosis factor-α pathway was up-regulated in lung compared to liver metastases, and inhibition of this pathway affected metastasis diversity. These results highlight that the cellular and molecular heterogeneity observed in metastases is largely dictated by the tumor microenvironment.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Neoplasias Pulmonares , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Transcriptoma , Microambiente Tumoral/genética
12.
BMC Cancer ; 21(1): 846, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294073

RESUMO

BACKGROUND: Prostate cancer is caused by genomic aberrations in normal epithelial cells, however clinical translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic opportunities. RESULTS: In this study, the experimental enrichment of selected cell-types, the development of a Bayesian inference model for continuous differential transcript abundance, and multiplex immunohistochemistry permitted us to define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis. An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses. These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex immunohistochemistry. CONCLUSIONS: This study advances our knowledge concerning the role of monocyte-derived recruitment in primary prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment immune modulation.


Assuntos
Perfilação da Expressão Gênica , Monócitos/metabolismo , Monócitos/patologia , Neoplasias da Próstata/genética , Transcriptoma , Microambiente Tumoral/genética , Biologia Computacional/métodos , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Imunofenotipagem , Estimativa de Kaplan-Meier , Masculino , Anotação de Sequência Molecular , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade
13.
Breast Cancer Res ; 23(1): 69, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187545

RESUMO

BACKGROUND: Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. METHODS: The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. RESULTS: The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. CONCLUSIONS: This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Transcriptoma , Animais , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Camundongos , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo
14.
EMBO J ; 40(11): e107333, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950524

RESUMO

To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/- tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatment-naive primary tumors, including estrogen receptor (ER)+ , HER2+ , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1+/- tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple-negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor-associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large-scale integration of patient samples provides a high-resolution map of cell diversity in normal and cancerous human breast.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Glândulas Mamárias Humanas/metabolismo , Análise de Célula Única , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/patologia , RNA-Seq , Microambiente Tumoral
15.
Cell Death Differ ; 27(10): 2768-2780, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32341449

RESUMO

Smac mimetics target inhibitor of apoptosis (IAP) proteins, thereby suppressing their function to facilitate tumor cell death. Here we have evaluated the efficacy of the preclinical Smac-mimetic compound A and the clinical lead birinapant on breast cancer cells. Both exhibited potent in vitro activity in triple-negative breast cancer (TNBC) cells, including those from patient-derived xenograft (PDX) models. Birinapant was further studied using in vivo PDX models of TNBC and estrogen receptor-positive (ER+) breast cancer. Birinapant exhibited single agent activity in all TNBC PDX models and augmented response to docetaxel, the latter through induction of TNF. Transcriptomic analysis of TCGA datasets revealed that genes encoding mediators of Smac-mimetic-induced cell death were expressed at higher levels in TNBC compared with ER+ breast cancer, resulting in a molecular signature associated with responsiveness to Smac mimetics. In addition, the cell death complex was preferentially formed in TNBCs versus ER+ cells in response to Smac mimetics. Taken together, our findings provide a rationale for prospectively selecting patients whose breast tumors contain a competent death receptor signaling pathway for the further evaluation of birinapant in the clinic.


Assuntos
Antineoplásicos/farmacologia , Dipeptídeos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Transcriptoma/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID
16.
Nat Cell Biol ; 22(5): 546-558, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341550

RESUMO

Macrophages are diverse immune cells that reside in all tissues. Although macrophages have been implicated in mammary-gland function, their diversity has not been fully addressed. By exploiting high-resolution three-dimensional imaging and flow cytometry, we identified a unique population of tissue-resident ductal macrophages that form a contiguous network between the luminal and basal layers of the epithelial tree throughout postnatal development. Ductal macrophages are long lived and constantly survey the epithelium through dendrite movement, revealed via advanced intravital imaging. Although initially originating from embryonic precursors, ductal macrophages derive from circulating monocytes as they expand during puberty. Moreover, they undergo proliferation in pregnancy to maintain complete coverage of the epithelium in lactation, when they are poised to phagocytose milk-producing cells post-lactation and facilitate remodelling. Interestingly, ductal macrophages strongly resemble mammary tumour macrophages and form a network that pervades the tumour. Thus, the mammary epithelium programs specialized resident macrophages in both physiological and tumorigenic contexts.


Assuntos
Células Epiteliais/fisiologia , Epitélio/fisiologia , Animais , Proliferação de Células/fisiologia , Feminino , Lactação/fisiologia , Macrófagos/fisiologia , Glândulas Mamárias Animais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Fagocitose/fisiologia , Gravidez
17.
Science ; 367(6478)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31919129

RESUMO

Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias/imunologia , Butirofilinas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Antígenos CD/química , Antígenos CD/imunologia , Butirofilinas/química , Butirofilinas/genética , Linhagem Celular Tumoral , Humanos , Ligantes , Ativação Linfocitária , Fosforilação , Domínios Proteicos , Multimerização Proteica
19.
Cancer Cell ; 35(4): 618-632.e6, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30930118

RESUMO

Breast tumors are inherently heterogeneous, but the evolving cellular organization through neoplastic progression is poorly understood. Here we report a rapid, large-scale single-cell resolution 3D imaging protocol based on a one-step clearing agent that allows visualization of normal tissue architecture and entire tumors at cellular resolution. Imaging of multicolor lineage-tracing models of breast cancer targeted to either basal or luminal progenitor cells revealed profound clonal restriction during progression. Expression profiling of clones arising in Pten/Trp53-deficient tumors identified distinct molecular signatures. Strikingly, most clones harbored cells that had undergone an epithelial-to-mesenchymal transition, indicating widespread, inherent plasticity. Hence, an integrative pipeline that combines lineage tracing, 3D imaging, and clonal RNA sequencing technologies offers a comprehensive path for studying mechanisms underlying heterogeneity in whole tumors.


Assuntos
Neoplasias da Mama/patologia , Linhagem da Célula , Plasticidade Celular , Transição Epitelial-Mesenquimal , Imageamento Tridimensional , Microscopia Confocal , Análise de Célula Única/métodos , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula/genética , Plasticidade Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Análise de Sequência de RNA , Transcriptoma , Carga Tumoral
20.
Cancer Discov ; 9(3): 354-369, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30518523

RESUMO

Venetoclax, a potent and selective BCL2 inhibitor, synergizes with endocrine therapy in preclinical models of ER-positive breast cancer. Using a phase Ib 3 + 3 dose-escalation and expansion study design, 33 patients with ER and BCL2-positive metastatic disease (mean prior regimens, 2; range, 0-8) were treated with daily tamoxifen (20 mg) and venetoclax (200-800 mg). Apart from uncomplicated "on-target" lymphopenia, no dose-limiting toxicities or high-grade adverse events were observed in the escalation phase (15 patients), and 800 mg was selected as the recommended phase II dose (RP2D). In the expansion phase (18 patients), few high-grade treatment-related adverse events were observed. For 24 patients treated at the RP2D, the confirmed radiologic response rate was 54% and the clinical benefit rate was 75%. Treatment responses were preempted by metabolic responses (FDG-PET) at 4 weeks and correlated with serial changes in circulating tumor DNA. Radiologic responses (40%) and clinical benefit (70%) were observed in 10 patients with plasma-detected ESR1 mutations. SIGNIFICANCE: In the first clinical study to evaluate venetoclax in a solid tumor, we demonstrate that combining venetoclax with endocrine therapy has a tolerable safety profile and elicits notable activity in ER and BCL2-positive metastatic breast cancer. These findings support further investigation of combination therapy for patients with BCL2-positive tumors.See related commentary by Drago et al., p. 323.This article is highlighted in the In This Issue feature, p. 305.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , DNA Tumoral Circulante/análise , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Esquema de Medicação , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/administração & dosagem , Tamoxifeno/administração & dosagem , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA