Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190332

RESUMO

Hurthle cell (HC), anaplastic (AC), and medullary (MC) carcinomas are low frequency thyroid tumors that pose several challenges for physicians and pathologists due to the scarcity of cases, information, and histopathological images, especially in the many areas around the world in which sophisticated molecular and genetic diagnostic facilities are unavailable. It is, therefore, cogent to provide tools for microscopists to achieve accurate diagnosis, such as histopathological images with reliable biomarkers, which can help them to reach a differential diagnosis. We are investigating whether components of the chaperone system (CS), such as the molecular chaperones, can be considered dependable biomarkers, whose levels and distribution inside and outside cells in the tumor tissue could present a distinctive histopathological pattern for each tumor type. Here, we report data on the chaperones Hsp27, Hsp60, and Hsp90. They presented quantitative levels and distribution patterns that were different for each tumor and differed from those of a benign thyroid pathology, goiter (BG). Therefore, the reported methodology can be beneficial when the microscopist must differentiate between HC, AC, MC, and BG.

2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768350

RESUMO

Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.


Assuntos
Chaperonina com TCP-1 , Chaperonas Moleculares , Simulação de Dinâmica Molecular , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/química , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Mutação
3.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887137

RESUMO

Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin-proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Carcinogênese , Chaperonina 60 , Feminino , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos
4.
Front Biosci (Landmark Ed) ; 27(3): 97, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35345329

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Novel treatments are needed to counteract the molecular mechanisms of GBM growth and drug resistance. The chaperone system (CS) members are typically cytoprotective but some, termed Hsp, can become pathogenic and participate in carcinogenesis, along with the vascular endothelial growth factor (VEGF), and we investigated them in GBM biopsies and derived cell lines. The objectives were to identify diagnostic-prognostic biomarkers and gather information for developing chaperonotherapy. METHODS: Cell lines from GBMs were established, characterized (morphology, growth characteristics, and specific markers), and stored. Chaperones and angiogenic factors [Hsp10, Hsp27, Hsp60, Hsp70, Hsp90, FLT-1 (VEGFR-1), FLK1 (KDR, VEGFR-2), and FLT-4 (VEGFR-3)] were observed in cells by immunofluorescence while the chaperones were measured in tumor tissue by immunohistochemistry. RESULTS: Four cell lines were derived from four different GBMs; the cells were spindle shaped or polygonal and grew at high rates as adherent monolayers or clusters without evidence of contact inhibition. The astrocyte-specific glial fibrillary acidic protein (GFAP); and the neuronal NSE, malignancy VIM, and proliferation PCNA, markers were determined. The cells expressed GFAP but no NSE, indicating that they were primary glioblastoma cell lines, with high levels of Hsp10, Hsp27, Hsp60, Hsp90, and Flk1; and low levels of Hsp70, Flt1, and Flt4. CONCLUSIONS: Four cell lines were established derived from four out of ten GBM tumors studied. The cell lines showed intense positivity for chaperones studied and factors connected to malignancy and the tumors showed increased levels of chaperones, making them potential diagnostic-prognostic biomarkers and targets for anti-cancer compounds.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/patologia , Linhagem Celular , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Proteínas de Choque Térmico HSP27/uso terapêutico , Proteínas de Choque Térmico HSP70 , Humanos , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
5.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919591

RESUMO

Thyroid cancers are the most common of the endocrine system malignancies and progress must be made in the areas of differential diagnosis and treatment to improve patient management. Advances in the understanding of carcinogenic mechanisms have occurred in various fronts, including studies of the chaperone system (CS). Components of the CS are found to be quantitatively increased or decreased, and some correlations have been established between the quantitative changes and tumor type, prognosis, and response to treatment. These correlations provide the basis for identifying distinctive patterns useful in differential diagnosis and for planning experiments aiming at elucidating the role of the CS in tumorigenesis. Here, we discuss studies of the CS components in various thyroid cancers (TC). The chaperones belonging to the families of the small heat-shock proteins Hsp70 and Hsp90 and the chaperonin of Group I, Hsp60, have been quantified mostly by immunohistochemistry and Western blot in tumor and normal control tissues and in extracellular vesicles. Distinctive differences were revealed between the various thyroid tumor types. The most frequent finding was an increase in the chaperones, which can be attributed to the augmented need for chaperones the tumor cells have because of their accelerated metabolism, growth, and division rate. Thus, chaperones help the tumor cell rather than protect the patient, exemplifying chaperonopathies by mistake or collaborationism. This highlights the need for research on chaperonotherapy, namely the development of means to eliminate/inhibit pathogenic chaperones.


Assuntos
Chaperonas Moleculares/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Animais , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos
6.
Food Funct ; 12(7): 3083-3095, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33720221

RESUMO

In the last few years, there has been emerging interest in developing treatments against human diseases using natural bioactive content. Here, the powder of the edible mushroom Pleurotus eryngii var. eryngii was mixed with the normal diet of mice bearing C26 colon carcinoma. Interestingly, it was evidenced by a significant increase in the survival rate of C26 tumor-bearing mice accompanied by a significant increase in Hsp90 and Hsp27 protein levels in the tumors. These data were paralleled by a decrease in Hsp60 levels. The mushroom introduced in the diet induced the inhibition of the transcription of the pro-inflammatory cytokines IL-6 and IL-1 exerting an anti-inflammatory action. The effects of the mushroom were mediated by the activation of c-Jun NH2-terminal kinases as a result of metabolic stress induced by the micronutrients introduced in the diet. In the tumors of C26 bearing mice fed with Pleurotus eryngii there was also a decreased expression of the mitotic regulator survivin and the anti-apoptotic factor Bcl-xL as well as an increase in the expression levels of Atg7, a protein that drives autophagy. In our hypothesis the interplay of these molecules favored the survival of the mice fed with the mushroom. These data are promising for the introduction of Pleurotus eryngii as a dietary supplement or as an adjuvant in anti-cancer therapy.


Assuntos
Neoplasias do Colo/dietoterapia , Pleurotus , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Resposta ao Choque Térmico/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia
7.
FASEB J ; 35(2): e21328, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33433932

RESUMO

To date, there are limited and incomplete data on possible sex-based differences in fiber-types of skeletal muscle and their response to physical exercise. Adult healthy male and female mice completed a single bout of endurance exercise to examine the sex-based differences of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), heat shock protein 60 (Hsp60), interleukin 6 (IL-6) expression, as well as the Myosin Heavy Chain (MHC) fiber-type distribution in soleus and extensor digitorum longus (EDL) muscles. Our results showed for the first time that in male soleus, a muscle rich of type IIa fibers, endurance exercise activates specifically genes involved in mitochondrial biogenesis such as PGC1 α1 isoform, Hsp60 and IL-6, whereas the expression of PGC1 α2 and α3 was significantly upregulated in EDL muscle, a fast-twitch skeletal muscle, independently from the gender. Moreover, we found that the acute response of different PGC1α isoforms was muscle and gender dependent. These findings add a new piece to the huge puzzle of muscle response to physical exercise. Given the importance of these genes in the physiological response of the muscle to exercise, we strongly believe that our data could support future research studies to personalize a specific and sex-based exercise training protocol.


Assuntos
Atividade Motora , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Chaperonina 60/genética , Chaperonina 60/metabolismo , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores Sexuais
8.
Cell Stress Chaperones ; 25(6): 805-820, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32856199

RESUMO

Fatty acid-binding proteins (FABPs) are lipid chaperones assisting in the trafficking of long-chain fatty acids with functions in various cell compartments, including oxidation, signaling, gene-transcription regulation, and storage. The various known FABP isoforms display distinctive tissue distribution, but some are active in more than one tissue. Quantitative and/or qualitative changes of FABPs are associated with pathological conditions. Increased circulating levels of FABPs are biomarkers of disorders such as obesity, insulin resistance, cardiovascular disease, and cancer. Deregulated expression and malfunction of FABPs can result from genetic alterations or posttranslational modifications and can be pathogenic. We have assembled the disorders with abnormal FABPs as chaperonopathies in a distinct nosological entity. This entity is similar but separate from that encompassing the chaperonopathies pertaining to protein chaperones. In this review, we discuss the role of FABPs in the pathogenesis of metabolic syndrome, cancer, and neurological diseases. We highlight the opportunities for improving diagnosis and treatment that open by encompassing all these pathological conditions within of a coherent nosological group, focusing on abnormal lipid chaperones as biomarkers of disease and etiological-pathogenic factors.


Assuntos
Pesquisa Biomédica , Doença , Lipídeos/química , Chaperonas Moleculares/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Modelos Biológicos
9.
Front Mol Biosci ; 7: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582761

RESUMO

Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The question is by what mechanism this protein can become multifaceted. Likely, one factor contributing to this diversity is post-translational modification (PTM). The amino acid sequence of Hsp60 contains many potential phosphorylation sites, and other PTMs are possible such as O-GlcNAcylation, nitration, acetylation, S-nitrosylation, citrullination, oxidation, and ubiquitination. The effect of some of these PTMs on Hsp60 functions have been examined, for instance phosphorylation has been implicated in sperm capacitation, docking of H2B and microtubule-associated proteins, mitochondrial dysfunction, tumor invasiveness, and delay or facilitation of apoptosis. Nitration was found to affect the stability of the mitochondrial permeability transition pore, to inhibit folding ability, and to perturb insulin secretion. Hyperacetylation was associated with mitochondrial failure; S-nitrosylation has an impact on mitochondrial stability and endothelial integrity; citrullination can be pro-apoptotic; oxidation has a role in the response to cellular injury and in cell migration; and ubiquitination regulates interaction with the ubiquitin-proteasome system. Future research ought to determine which PTM causes which variations in the Hsp60 molecular properties and functions, and which of them are pathogenic, causing chaperonopathies. This is an important topic considering the number of acquired Hsp60 chaperonopathies already cataloged, many of which are serious diseases without efficacious treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA