Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Parasit Vectors ; 17(1): 393, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285481

RESUMO

BACKGROUND: Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS: Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS: Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS: The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.


Assuntos
Anisakis , Vesículas Extracelulares , Organoides , Humanos , Organoides/parasitologia , Organoides/imunologia , Anisakis/imunologia , Anisakis/genética , Animais , Vesículas Extracelulares/imunologia , Anisaquíase/parasitologia , Anisaquíase/imunologia , Citocinas/metabolismo , Citocinas/genética , Intestinos/parasitologia , Intestinos/imunologia , Carcinogênese , Imunomodulação
2.
Microbiol Spectr ; 11(6): e0077523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795996

RESUMO

IMPORTANCE: In this paper, we demonstrated that apyrase is released within the host cell cytoplasm during infection to target the intracellular ATP pool. By degrading intracellular ATP, apyrase contributes to prevent caspases activation, thereby inhibiting the activation of pyroptosis in infected cells. Our results show, for the first time, that apyrase is involved in the modulation of host cell survival, thereby aiding this pathogen to dampen the inflammatory response. This work adds a further piece to the puzzle of Shigella pathogenesis. Due to its increased spread worldwide, prevention and controlling strategies are urgently needed. Overall, this study highlighted apyrase as a suitable target for an anti-virulence therapy to tackle this pathogen.


Assuntos
Proteínas de Bactérias , Fatores de Virulência , Shigella flexneri , Apirase , Células Eucarióticas , Trifosfato de Adenosina
3.
Int Immunopharmacol ; 117: 109996, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36933449

RESUMO

The peculiar property of Thymosin alpha 1 (Tα1) to act as master regulator of immune homeostasis has been successfully defined in different physiological and pathological contexts ranging from cancer to infection. Interestingly, recent papers also demonstrated its mitigating effect on the "cytokine storm" as well as on the T-cell exhaustion/activation in SARS-CoV-2 infected individuals. Nevertheless, in spite of the increasing knowledge on Tα1-induced effects on T cell response confirming the distinctive features of this multifaceted peptide, little is known on its effects on innate immunity during SARS-CoV-2 infection. Here, we interrogated peripheral blood mononuclear cell (PBMC) cultures stimulated with SARS-CoV-2 to disclose Tα1 properties on the main cell players of early response to infection, namely monocytes and myeloid dendritic cells (mDC). Moving from ex vivo data showing an enhancement in the frequency of inflammatory monocytes and activated mDC in COVID-19 patients, a PBMC-based experimental setting reproduced in vitro a similar profile with an increased percentage of CD16+ inflammatory monocytes and mDC expressing CD86 and HLA-DR activation markers in response to SARS-CoV-2 stimulation. Interestingly, the treatment of SARS-CoV-2-stimulated PBMC with Tα1 dampened the inflammatory/activation status of both monocytes and mDC by reducing the release of pro-inflammatory mediators, including TNF-α, IL-6 and IL-8, while promoting the production of the anti-inflammatory cytokine IL-10. This study further clarifies the working hypothesis on Tα1 mitigating action on COVID-19 inflammatory condition. Moreover, these evidence shed light on inflammatory pathways and cell types involved in acute SARS-CoV-2 infection and likely targetable by newly immune-regulating therapeutic approaches.


Assuntos
COVID-19 , Timosina , Humanos , Timalfasina/uso terapêutico , Leucócitos Mononucleares/metabolismo , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Timosina/farmacologia , Timosina/uso terapêutico
4.
J Am Med Dir Assoc ; 24(2): 140-147.e2, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587928

RESUMO

OBJECTIVES: Nursing home (NH) residents have been significantly affected by the coronavirus disease 2019 (COVID-19) pandemic. Studies addressing the immune responses induced by COVID-19 vaccines in NH residents have documented a good postvaccination antibody response and the beneficial effect of a third booster vaccine dose. Less is known about vaccine-induced activation of cell-mediated immune response in frail older individuals in the long term. The aim of the present study is to monitor messenger RNA SARS-CoV-2 vaccine-induced T-cell responses in a sample of Italian NH residents who received primary vaccine series and a third booster dose and to assess the interaction between T-cell responses and humoral immunity. DESIGN: Longitudinal cohort study. SETTING AND PARTICIPANTS: Thirty-four residents vaccinated with BNT162b2 messenger RNA SARS-CoV-2 vaccine between February and April 2021 and who received a third BNT162b2 booster dose between October and November 2021 were assessed for vaccine-induced immunity 6 (prebooster) and 12 (postbooster) months after the first BNT162b2 vaccine dose. METHODS: Pre- and postbooster cell-mediated immunity was assessed by intracellular cytokine staining of peripheral blood mononuclear cells stimulated in vitro with peptides covering the immunodominant sequence of SARS-CoV-2 spike protein. The simultaneous production of interferon-γ, tumor necrosis factor-α, and interleukin-2 was measured. Humoral immunity was assessed in parallel by measuring serum concentration of antitrimeric spike IgG antibodies. RESULTS: Before the booster vaccination, 31 out of 34 NH residents had a positive cell-mediated immunity response to spike. Postbooster, 28 out of 34 had a positive response. Residents without a previous history of SARS-CoV-2 infection, who had a lower response prior the booster administration, showed a greater increase of T-cell responses after the vaccine booster dose. Humoral and cell-mediated immunity were, in part, correlated but only before booster vaccine administration. CONCLUSIONS AND IMPLICATIONS: The administration of the booster vaccine dose restored spike-specific T-cell responses in SARS-CoV-2 naïve residents who responded poorly to the first immunization, while a previous SARS-CoV-2 infection had an impact on the magnitude of vaccine-induced cell-mediated immunity at earlier time points. Our findings imply the need for a continuous monitoring of the immune status of frail NH residents to adapt future SARS-CoV-2 vaccination strategies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , RNA Mensageiro , Vacina BNT162 , SARS-CoV-2 , Leucócitos Mononucleares , Estudos Longitudinais , Linfócitos T , COVID-19/prevenção & controle , Vacinação , Casas de Saúde
5.
FASEB J ; 37(2): e22729, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583688

RESUMO

Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Glutationa/metabolismo , Oxirredução , Oxirredutases/metabolismo , Replicação Viral , Processamento de Proteína Pós-Traducional
6.
Pathogens ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297271

RESUMO

Background: Anisakis spp. third-stage larvae (L3) are the causative agents of human zoonosis called anisakiasis. The accidental ingestion of L3 can cause acute and chronic inflammation at the gastric, intestinal, or ectopic levels. Despite its relevance in public health, studies on pathogenetic mechanisms and parasite-human interplay are scarce. The aim of this study was to investigate the human inflammatory response to different Anisakis vehicles of pathogenicity. Methods: Human colorectal adenocarcinoma (Caco-2) cells were exposed to Anisakis L3 (the initial contact with the host), extracellular vesicles (EVs, Anisakis-host communication), and crude extract (CE, the larval dying). The protein quantity and gene expression of two pro-inflammatory cytokines (IL-6 and IL-8) were investigated using an ELISA test (6 h and 24 h) and a qReal-Time PCR (1 h, 6 h, and 24 h), respectively. Results: The L3 and EVs induced a downregulation in both the Il-6 and Il-8 gene expression and protein quantity. On the contrary, the CE stimulated IL-6 gene expression and its protein release, not affecting IL-8. Conclusions: The Caco-2 cells seemed to not react to the exposure to the L3 and EVs, suggesting a parasite's immunomodulating action to remain alive in an inhospitable niche. Conversely, the dying larva (CE) could induce strong activation of the immune strategy of the host that, in vivo, would lead to parasite expulsion, eosinophilia, and/or granuloma formation.

7.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145282

RESUMO

Resveratrol (RSV) is a natural stilbene polyphenolic compound found in several plant species. It is characterized by antioxidant properties, and its role in controlling viral replication has been demonstrated for different viral infections. Despite its promising antiviral properties, RSV biological activity is limited by its low bioavailability and high metabolic rate. In this study, we optimized its structure by synthesizing new RSV derivatives that maintained the phenolic scaffold and contained different substitution patterns and evaluated their potential anti-influenza virus activity. The results showed that viral protein synthesis decreased 24 h post infection; particularly, the nitro-containing compounds strongly reduced viral replication. The molecules did not exert their antioxidant properties during infection; in fact, they were not able to rescue the virus-induced drop in GSH content or improve the antioxidant response mediated by the Nrf2 transcription factor and G6PD enzyme. Similar to what has already been reported for RSV, they interfered with the nuclear-cytoplasmic traffic of viral nucleoprotein, probably inhibiting cellular kinases involved in the regulation of specific steps of the virus life cycle. Overall, the data indicate that more lipophilic RSV derivatives have improved antiviral efficacy compared with RSV and open the way for new cell-targeted antiviral strategies.

8.
Viruses ; 14(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146876

RESUMO

Since the non-coding control region (NCCR) and microRNA (miRNA) could represent two different and independent modalities of regulating JC polyomavirus (JCPyV) replication at the transcriptional and post-transcriptional levels, the interplay between JC viral load based on NCCR architecture and miRNA levels, following JCPyV infection with archetypal and rearranged (rr)-NCCR JCPyV variants, was explored in COS-7 and SVGp12 cells infected by different JCPyV strains. Specifically, the involvement of JCPyV miRNA in regulating viral replication was investigated for the archetypal CY strain-which is the transmissible form-and for the rearranged MAD-1 strain, which is the first isolated variant from patients with progressive multifocal leukoencephalopathy. The JCPyV DNA viral load was low in cells infected with CY compared with that in MAD-1-infected cells. Productive viral replication was observed in both cell lines. The expression of JCPyV miRNAs was observed from 3 days after viral infection in both cell types, and miR-J1-5p expression was inversely correlated with the JCPyV replication trend. The JCPyV miRNAs in the exosomes present in the supernatants produced by the infected cells could be carried into uninfected cells. Additional investigations of the expression of JCPyV miRNAs and their presence in exosomes are necessary to shed light on their regulatory role during viral reactivation.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , MicroRNAs , Linhagem Celular , DNA Viral/genética , Humanos , Vírus JC/genética , MicroRNAs/genética , Carga Viral , Replicação Viral
9.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806198

RESUMO

Herpes simplex virus type-1 (HSV-1) and John Cunningham polyomavirus (JCPyV) are widely distributed DNA viruses causing mainly asymptomatic infection, but also mild to very severe diseases, especially when these viruses reach the brain. Some drugs have been developed to inhibit HSV-1 replication in host cells, but their prolonged use may induce resistance phenomena. In contrast, to date, there is no cure for JCPyV. The search for alternative drugs that can reduce viral infections without undermining the host cell is moving toward antimicrobial peptides (AMPs) of natural occurrence. These include amphibian AMPs belonging to the temporin family. Herein, we focus on temporin G (TG), showing that it strongly affects HSV-1 replication by acting either during the earliest stages of its life cycle or directly on the virion. Computational studies have revealed the ability of TG to interact with HSV-1 glycoprotein B. We also found that TG reduced JCPyV infection, probably affecting both the earliest phases of its life cycle and the viral particle, likely through an interaction with the viral capsid protein VP1. Overall, our results are promising for the development of short naturally occurring peptides as antiviral agents used to counteract diseases related to HSV-1 and JCPyV.


Assuntos
Herpesvirus Humano 1 , Anfíbios , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Herpesvirus Humano 1/fisiologia , Replicação Viral
10.
J Clin Med ; 11(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054041

RESUMO

Markers of JC polyomavirus (JCPyV) activity can be used to evaluate the risk of progressive multifocal leukoencephalopathy (PML) in treated multiple sclerosis (MS) patients. The presence of JCPyV DNA and microRNA (miR-J1-5p), the anti-JCV index and the sequence of the non-coding control region (NCCR) in urine and plasma were determined in 42 MS subjects before treatment (T0), 6 months (T6) and 12 months (T12) after natalizumab, ocrelizumab, fingolimod or dimethyl-fumarate administration and in 25 healthy controls (HC). The number of MS patients with viruria increased from 43% at T0 to 100% at T12, whereas it remained similar for the HC group (35-40%). Viremia first occurred 6 months after treatment in MS patients and increased after 12 months, whereas it was absent in HC. The viral load in urine and plasma from the MS cohort increased over time, mostly pronounced in natalizumab-treated patients, whereas it persisted in HC. The archetypal NCCR was detected in all positive urine, whereas mutations were observed in plasma-derived NCCRs resulting in a more neurotropic variant. The prevalence and miR-J1-5p copy number in MS urine and plasma dropped after treatment, whereas they remained similar in HC specimens. Viruria and miR-J1-5p expression did not correlate with anti-JCV index. In conclusion, analyzing JCPyV DNA and miR-J1-5p levels may allow monitoring JCPyV activity and predicting MS patients at risk of developing PML.

11.
Pediatr Allergy Immunol ; 33 Suppl 27: 22-26, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080308

RESUMO

BACKGROUND: Allergic rhinitis (AR) is one of the most common allergic diseases affecting children. Objective assessment of nasal obstruction is possible through active anterior rhinomanometry (AAR). Several factors, such as passive smoke exposure (PSE), are triggers for worsening nasal obstruction and chronic inflammation. PSE affects bacterial eubiosis in the upper respiratory tract. This study evaluates the influence of PSE and cotinine levels on both nasal obstruction and local microbiome composition in children with AR. METHODS: Fifty patients (aged between 6 and 16 years) with AR monosensitized grass pollen were enrolled. They underwent skin prick tests, a nasal swab to evaluate the microbial composition of the anterior nostrils, a basal AAR, a post-decongestion AAR, and spirometry. Serum cotinine levels were assessed to evaluate PSE. RESULTS: A significantly lower percentage of mean nasal flow (mNF%) was observed before and after hydrazine administration in subjects exposed to passive smoke (Exp group) compared with the non-exposed group. In contrast, higher cotinine levels were observed in the Exp group than in the controls. PSE has been associated with a decrease in biodiversity and a change in the nasal microbiome composition; instead, although to a different extent, the abundance of specific taxa resulted in being correlated to cotinine levels and nasal flow. CONCLUSION: Children with AR exposed to passive smoke with positive serum cotinine could represent a risk factor for developing nasal obstruction and microbial dysbiosis, suggesting their possible role in pathophysiological processes.


Assuntos
Microbiota , Rinite Alérgica , Adolescente , Criança , Disbiose , Humanos , Projetos Piloto , Fumar
12.
J Microbiol Immunol Infect ; 55(3): 405-412, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34301493

RESUMO

BACKGROUND/PURPOSE: The non-protein thiol glutathione is protective against infection by Mycobacterium tuberculosis (MTB) and, together with the transcription factor NRF2 (the nuclear factor erythroid 2-related factor 2), plays a crucial role in counteracting MTB-induced redox imbalance. Many genes implicated in the antioxidant response belong to the NRF2-signalling pathway, whose central role in the pathogenesis of tuberculosis (TB) has been recently proposed. METHODS: In this study, we measured GSH levels in blood of patients with active TB and analysed the individual NRF2-mediated redox profile, in order to provide additional tools for discriminating the pathologic TB state and addressing therapeutic interventions. RESULTS: Our findings show a systemic individual modulation of GSH and NRF2 signaling pathway in patients with TB, with a "personalized" induction of NRF2-target genes. CONCLUSION: This study can provide useful tools to monitor the course of the infection and address patients' treatment.


Assuntos
Fator 2 Relacionado a NF-E2 , Tuberculose , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Glutationa/genética , Glutationa/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais , Tuberculose/tratamento farmacológico
13.
Biomedicines ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829949

RESUMO

Polyphenols have been widely studied for their antiviral effect against respiratory virus infections. Among these, resveratrol (RV) has been demonstrated to inhibit influenza virus replication and more recently, it has been tested together with pterostilbene against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present work, we evaluated the antiviral activity of polydatin, an RV precursor, and a mixture of polyphenols and other micronutrients, named A5+, against influenza virus and SARS-CoV-2 infections. To this end, we infected Vero E6 cells and analyzed the replication of both respiratory viruses in terms of viral proteins synthesis and viral titration. We demonstrated that A5+ showed a higher efficacy in inhibiting both influenza virus and SARS-CoV-2 infections compared to polydatin treatment alone. Indeed, post infection treatment significantly decreased viral proteins expression and viral release, probably by interfering with any step of virus replicative cycle. Intriguingly, A5+ treatment strongly reduced IL-6 cytokine production in influenza virus-infected cells, suggesting its potential anti-inflammatory properties during the infection. Overall, these results demonstrate the synergic and innovative antiviral efficacy of A5+ mixture, although further studies are needed to clarify the mechanisms underlying its inhibitory effect.

14.
Oxid Med Cell Longev ; 2021: 9176993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34845419

RESUMO

OBJECTIVES: Some DNA viruses, such as BKPyV, are capable of inducing neoplastic transformation in human tissues through still unclear mechanisms. The goal of this study is to investigate the carcinogenic potential of BK polyomavirus (BKPyV) in human embryonic kidney 293 (Hek293) cells, dissecting the molecular mechanism that determines the neoplastic transformation. MATERIALS AND METHODS: BKPyV, isolated from urine samples of infected patients, was used to infect monolayers of Hek293 cells. Subsequently, intracellular redox changes, GSH/GSSH concentration by HPLC, and reactive oxygen/nitrogen species (ROS/RNS) production were monitored. Moreover, to understand the signaling pathway underlying the neoplastic transformation, the redox-sensitive HFS1-Hsp27 molecular axis was examined using the flavonoid quercetin and polishort hairpin RNA technologies. RESULTS: The data obtained show that while BKPyV replication is closely linked to the transcription factor p53, the increase in Hek293 cell proliferation is due to the activation of the signaling pathway mediated by HSF1-Hsp27. In fact, its inhibition blocks viral replication and cell growth, respectively. CONCLUSIONS: The HSF1-Hsp27 signaling pathway is involved in BKPyV infection and cellular replication and its activation, which could be involved in cell transformation.


Assuntos
Vírus BK/patogenicidade , Células HEK293/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Infecções por Polyomavirus/fisiopatologia , Proliferação de Células , Feminino , Humanos , Masculino
15.
Ital J Pediatr ; 47(1): 211, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696778

RESUMO

Recurrent respiratory infections (RRIs) are a common clinical condition in children, in fact about 25% of children under 1 year and 6% of children during the first 6 years of life have RRIs. In most cases, infections occur with mild clinical manifestations and the frequency of episodes tends to decrease over time with a complete resolution by 12 years of age. However, RRIs significantly reduce child and family quality of life and lead to significant medical and social costs.Despite the importance of this condition, there is currently no agreed definition of the term RRIs in the literature, especially concerning the frequency and type of infectious episodes to be considered. The aim of this consensus document is to propose an updated definition and provide recommendations with the intent of guiding the physician in the complex process of diagnosis, management and prevention of RRIs.


Assuntos
Infecções Respiratórias/prevenção & controle , Adenoidectomia , Adjuvantes Imunológicos/uso terapêutico , Administração Intranasal , Algoritmos , Antibioticoprofilaxia , Antioxidantes/administração & dosagem , Criança , Terapias Complementares , Humanos , Ácido Hialurônico/administração & dosagem , Vacinas contra Influenza , Vacinas Pneumocócicas , Prebióticos , Probióticos/uso terapêutico , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/uso terapêutico , Recidiva , Resveratrol/administração & dosagem , Tiazolidinas/uso terapêutico , Tonsilectomia , Vitaminas/uso terapêutico
16.
Viruses ; 13(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578264

RESUMO

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) caused by the JC virus is the main limitation to the use of disease modifying therapies for treatment of multiple sclerosis (MS). METHODS: To assess the PML risk in course of ocrelizumab, urine and blood samples were collected from 42 MS patients at baseline (T0), at 6 (T2) and 12 months (T4) from the beginning of therapy. After JCPyV-DNA extraction, a quantitative-PCR (Q-PCR) was performed. Moreover, assessment of JCV-serostatus was obtained and arrangements' analysis of non-coding control region (NCCR) and of viral capsid protein 1 (VP1) was carried out. RESULTS: Q-PCR revealed JCPyV-DNA in urine at all selected time points, while JCPyV-DNA was detected in plasma at T4. From T0 to T4, JC viral load in urine was detected, increased in two logarithms and, significantly higher, compared to viremia. NCCR from urine was archetypal. Plasmatic NCCR displayed deletion, duplication, and point mutations. VP1 showed the S269F substitution involving the receptor-binding region. Anti-JCV index and IgM titer were found to statistically decrease during ocrelizumab treatment. CONCLUSIONS: Ocrelizumab in JCPyV-DNA positive patients is safe and did not determine PML cases. Combined monitoring of ocrelizumab's effects on JCPyV pathogenicity and on host immunity might offer a complete insight towards predicting PML risk.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fatores Imunológicos/uso terapêutico , Vírus JC/efeitos dos fármacos , Leucoencefalopatia Multifocal Progressiva/etiologia , Esclerose Múltipla/tratamento farmacológico , Carga Viral/efeitos dos fármacos , Adulto , Proteínas do Capsídeo/genética , DNA Viral/genética , Feminino , Humanos , Vírus JC/classificação , Vírus JC/genética , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/sangue , Leucoencefalopatia Multifocal Progressiva/urina , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/complicações , Esclerose Múltipla/urina , Filogenia , Medição de Risco , Viremia/tratamento farmacológico
17.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808471

RESUMO

Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses.


Assuntos
Glutationa/metabolismo , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Humanos , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Viroses/metabolismo
18.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808574

RESUMO

COVID-19 is without any doubt the worst pandemic we have faced since the H1N1 virus outbreak. Even if vaccination against SARS-CoV-2 infection is becoming increasingly available, a more feasible approach for COVID-19 prevention and therapy is still needed. Evidence of a pathological link between metabolic diseases and severe forms of COVID-19 has stimulated critical reflection and new considerations. In particular, an abnormal immune response observed in certain patients with SARS-CoV-2 infection suggested possible common predisposing risk factors with autoimmune diseases such as Type 1 Diabetes (T1D). Correct supplementation with dietary factors may be key to preventing and counteracting both the underlying metabolic impairment and the complications of COVID-19. A set of agents may inhibit the cytokine storm and hypercoagulability that characterize severe COVID-19 infection: vitamin D3, omega-3 polyunsaturated fatty acids, polyphenols like pterostilbene, polydatin and honokiol, which can activate anti-inflammatory and antioxidant sirtuins pathways, quercetin, vitamin C, zinc, melatonin, lactoferrin and glutathione. These agents could be highly beneficial for subjects who have altered immune responses. In this review, we discuss the antiviral and metabolic effects of these dietary factors and propose their combination for potential applications in the prevention and treatment of COVID-19. Rigorous studies will be fundamental for validating preventive and therapeutic protocols that could be of assistance to mitigate disease progression following SARS-CoV-2 infection.


Assuntos
Doenças Autoimunes/dietoterapia , COVID-19/dietoterapia , Dieta , Doenças Metabólicas/dietoterapia , Doenças Autoimunes/complicações , COVID-19/complicações , Síndrome da Liberação de Citocina/dietoterapia , Síndrome da Liberação de Citocina/etiologia , Progressão da Doença , Humanos , Doenças Metabólicas/complicações , Trombofilia/dietoterapia , Trombofilia/etiologia
19.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803165

RESUMO

The resinous exudate produced by Commiphora myrrha (Nees) Engl. is commonly known as true myrrh and has been used since antiquity for several medicinal applications. Hundreds of metabolites have been identified in the volatile component of myrrh so far, mainly sesquiterpenes. Although several efforts have been devoted to identifying these sesquiterpenes, the phytochemical analyses have been performed by gas-chromatography/mass spectrometry (GC-MS) where the high temperature employed can promote degradation of the components. In this work, we report the extraction of C. myrrha by supercritical CO2, an extraction method known for the mild extraction conditions that allow avoiding undesired chemical reactions during the process. In addition, the analyses of myrrh oil and of its metabolites were performed by HPLC and GC-MS. Moreover, we evaluated the antiviral activity against influenza A virus of the myrrh extracts, that was possible to appreciate after the addition of vitamin E acetate (α-tocopheryl acetate) to the extract. Further, the single main bioactive components of the oil of C. myrrha commercially available were tested. Interestingly, we found that both furanodienone and curzerene affect viral replication by acting on different steps of the virus life cycle.

20.
Front Cell Infect Microbiol ; 11: 804976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071051

RESUMO

Influenza virus infection induces oxidative stress in host cells by decreasing the intracellular content of glutathione (GSH) and increasing reactive oxygen species (ROS) level. Glucose-6-phosphate dehydrogenase (G6PD) is responsible for the production of reducing equivalents of nicotinamide adenine dinucleotide phosphate (NADPH) that is used to regenerate the reduced form of GSH, thus restoring redox homeostasis. Cells deficient in G6PD display elevated levels of ROS and an increased susceptibility to viral infection, although the consequences of G6PD modulation during viral infection remain to be elucidated. In this study, we demonstrated that influenza virus infection decreases G6PD expression and activity, resulting in an increase in oxidative stress and virus replication. Moreover, the down regulation of G6PD correlated with a decrease in the expression of nuclear factor erythroid 2-related factor 2 (NRF2), a key transcription factor that regulates the expression of the antioxidant response gene network. Also down-regulated in influenza virus infected cells was sirtuin 2 (SIRT2), a NADPH-dependent deacetylase involved in the regulation of G6PD activity. Acetylation of G6PD increased during influenza virus infection in a manner that was strictly dependent on SIRT2 expression. Furthermore, the use of a pharmacological activator of SIRT2 rescued GSH production and NRF2 expression, leading to decreased influenza virus replication. Overall, these data identify a novel strategy used by influenza virus to induce oxidative stress and to favor its replication in host cells. These observations furthermore suggest that manipulation of metabolic and oxidative stress pathways could define new therapeutic strategies to interfere with influenza virus infection.


Assuntos
Glucosefosfato Desidrogenase , Orthomyxoviridae , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA