Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 596(1): 3-16, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822164

RESUMO

Cancer cells are challenged by a myriad of microenvironmental stresses, and it is their ability to efficiently adapt to the constantly changing nutrient, energy, oxidative, and/or immune landscape that allows them to survive and proliferate. Such adaptations, however, result in distinct vulnerabilities that are attractive therapeutic targets. Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are a family of druggable stress-regulated phosphoinositide kinases that become conditionally essential as a metabolic adaptation, paving the way to targeting cancer cell dependencies. Further, PI5P4Ks have a synthetic lethal interaction with the tumor suppressor p53, the loss of which is one of the most prevalent genetic drivers of malignant transformation. PI5P4K's emergence as a crucial axis in the expanding landscape of phosphoinositide signaling in cancer has already stimulated the development of specific inhibitors. Thus, a better understanding of the biology of the PI5P4Ks will allow for targeted and effective therapeutic interventions. Here, we attempt to summarize the mounting roles of the PI5P4Ks in cancer, including evidence that targeting them is a therapeutic vulnerability and promising next-in-line treatment for multiple cancer subtypes.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)
2.
Dev Cell ; 56(11): 1661-1676.e10, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984270

RESUMO

PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and ß-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.


Assuntos
Carcinogênese/genética , Mitocôndrias/genética , Neoplasias/metabolismo , Peroxissomos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Linhagem Celular Tumoral , Metabolismo Energético/genética , Feminino , Homeostase/genética , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neoplasias/genética , Neoplasias/patologia , Peroxissomos/genética
3.
FEBS J ; 287(2): 222-238, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693781

RESUMO

Today, the importance of autophagy in physiological processes and pathological conditions is undeniable. Initially, autophagy merely was described as an evolutionarily conserved mechanism to maintain metabolic homeostasis in times of starvation; however, in recent years it is now apparent that autophagy is a powerful regulator of many facets of cellular metabolism, that its deregulation contributes to various human pathologies, including cancer and neurodegeneration, and that its modulation has considerable potential as a therapeutic approach. Different lipid species, including sphingolipids, sterols, and phospholipids, play important roles in the various steps of autophagy. In particular, there is accumulating evidence indicating the minor group of phospholipids called the phosphoinositides as key modulators of autophagy, including the signaling processes underlying autophagy initiation, autophagosome biogenesis and maturation. In this review, we discuss the known functions to date of the phosphoinositides in autophagy and attempt to summarize the kinases and phosphatases that regulate them as well as the proteins that bind to them throughout the autophagy program. We will also provide examples of how the control of phosphoinositides and their metabolizing enzymes is relevant to understanding many human diseases.


Assuntos
Autofagia , Fosfatidilinositóis/metabolismo , Animais , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Fosfatidilinositóis/genética
4.
J Exp Med ; 215(1): 17-19, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29222106

RESUMO

In this issue of JEM, Kaittanis et al. (https://doi.org/10.1084/jem.20171052) report a new signaling role for prostate-specific membrane antigen (PSMA), providing a mechanistic link between two major oncogenic pathways, as well as promising therapeutic implications for the diagnosis and treatment of prostate cancer.


Assuntos
Fosfatidilinositol 3-Quinases , Receptores de Glutamato Metabotrópico , Antígenos de Superfície , Ácido Fólico , Ácido Glutâmico , Humanos , Masculino , Neoplasias da Próstata
5.
Elife ; 52016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26919175

RESUMO

Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas Musculares/biossíntese , Fatores de Transcrição/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Músculos/patologia , Proteínas com Motivo Tripartido , Proteína Supressora de Tumor p53/biossíntese , Regulação para Cima
6.
J Pharmacol Exp Ther ; 352(1): 23-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326132

RESUMO

Muscular atrophy, a physiopathologic process associated with severe human diseases such as amyotrophic lateral sclerosis (ALS) or cancer, has been linked to reactive oxygen species (ROS) production. The Notch pathway plays a role in muscle development and in muscle regeneration upon physical injury. In this study, we explored the possibility that the Notch pathway participates in the ROS-related muscular atrophy occurring in cancer-associated cachexia and ALS. We also tested whether hybrid compounds of tocopherol, harboring antioxidant activity, and the omega-alkanol chain, presenting cytoprotective activity, might reduce muscle atrophy and impact the Notch pathway. We identified one tocopherol-omega alkanol chain derivative, AGT251, protecting myoblastic cells against known cytotoxic agents. We showed that this compound presenting antioxidant activity counteracts the induction of the Notch pathway by cytotoxic stress, leading to a decrease of Notch1 and Notch3 expression. At the functional level, these regulations correlated with a repression of the Notch target gene Hes1 and the atrophy/remodeling gene MuRF1. Importantly, we also observed an induction of Notch3 and Hes1 expression in two murine models of muscle atrophy: a doxorubicin-induced cachexia model and an ALS murine model expressing mutated superoxide dismutase 1. In both models, the induction of Notch3 and Hes1 were partially opposed by AGT251, which correlated with ameliorations in body and muscle weight, reduction of muscular atrophy markers, and improved survival. Altogether, we identified a compound of the tocopherol family that protects against muscle atrophy in various models, possibly through the regulation of the Notch pathway.


Assuntos
Álcoois/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Atrofia Muscular/prevenção & controle , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tocoferóis/química , Tocoferóis/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Caquexia/induzido quimicamente , Caquexia/prevenção & controle , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Dano ao DNA , Doxorrubicina/efeitos adversos , Flavonoides/farmacologia , Humanos , Camundongos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor Notch3 , Tocoferóis/uso terapêutico , Fatores de Transcrição HES-1
7.
J Biol Chem ; 286(50): 43013-25, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22002055

RESUMO

Genetic ablations of p73 have shown its implication in the development of the nervous system. However, the relative contribution of ΔNp73 and TAp73 isoforms in neuronal functions is still unclear. In this study, we have analyzed the expression of these isoforms during neuronal death induced by alteration of the amyloid-ß precursor protein function or cisplatin. We observed a concomitant up-regulation of a TAp73 isoform and a down-regulation of a ΔNp73 isoform. The shift in favor of the pro-apoptotic isoform correlated with an induction of the p53/p73 target genes such as Noxa. At a functional level, we showed that TAp73 induced neuronal death and that ΔNp73 has a neuroprotective role toward amyloid-ß precursor protein alteration or cisplatin. We investigated the mechanisms of p73 expression and found that the TAp73 expression was regulated at the promoter level. In contrast, regulation of ΔNp73 protein levels was regulated by phosphorylation at residue 86 and multiple proteases. Thus, this study indicates that tight transcriptional and post-translational mechanisms regulate the p73 isoform ratios that play an important role in neuronal survival.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Células Cultivadas , Imunoprecipitação da Cromatina , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Immunoblotting , Camundongos , Neurônios/citologia , Proteínas Nucleares/genética , Fosforilação , Isoformas de Proteínas/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA