Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 1): 133233, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901510

RESUMO

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disrupting TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of novel host-oriented antivirals with a broad spectrum of action. Nonetheless, finding inhibitors with good properties as therapeutic agents remains a challenge since the key determinants of binding affinity and specificity are still poorly understood. Here we present a detailed thermodynamic, structural, and dynamic characterization viral PTAP Late domain recognition by TSG101-UEV, combining isothermal titration calorimetry, X-ray diffraction structural studies, molecular dynamics simulations, and computational analysis of intramolecular communication pathways. Our analysis highlights key contributions from conserved hydrophobic contacts and water-mediated hydrogen bonds at the PTAP binding interface. We have identified additional electrostatic hotspots adjacent to the core motif that modulate affinity. Using competitive phage display screening we have improved affinity by 1-2 orders of magnitude, producing novel peptides with low micromolar affinities that combine critical elements found in the best natural binders. Molecular dynamics simulations revealed that optimized peptides engage new pockets on the UEV domain surface. This study provides a comprehensive view of the molecular forces directing TSG101-UEV recognition of PTAP motifs, revealing that binding is governed by conserved structural elements yet tuneable through targeted optimization. These insights open new venues to design inhibitors targeting TSG101-dependent pathways with potential application as novel broad-spectrum antivirals.

3.
Cell Discov ; 10(1): 12, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296970

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

4.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790557

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cells dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cells ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulates lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation loose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo . Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

5.
J Am Chem Soc ; 145(2): 800-810, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36599057

RESUMO

Prodrugs have little or no pharmacological activity and are converted to active drugs in the body by enzymes, metabolic reactions, or through human-controlled actions. However, prodrugs promoting their chemical bioconversion without any of these processes have not been reported before. Here, we present an enzyme-independent prodrug activation mechanism by boron-based compounds (benzoxaboroles) targeting leucyl-tRNA synthetase (LeuRS), including an antibiotic that recently has completed phase II clinical trials to cure tuberculosis. We combine nuclear magnetic resonance spectroscopy and X-ray crystallography with isothermal titration calorimetry to show that these benzoxaboroles do not bind directly to their drug target LeuRS, instead they are prodrugs that activate their bioconversion by forming a highly specific and reversible LeuRS inhibition adduct with ATP, AMP, or the terminal adenosine of the tRNALeu. We demonstrate how the oxaborole group of the prodrugs cyclizes with the adenosine ribose at physiological concentrations to form the active molecule. This bioconversion mechanism explains the remarkably good druglike properties of benzoxaboroles showing efficacy against radically different human pathogens and fully explains the mechanism of action of these compounds. Thus, this adenosine-dependent activation mechanism represents a novel concept in prodrug chemistry that can be applied to improve the solubility, permeability and metabolic stability of challenging drugs.


Assuntos
Aminoacil-tRNA Sintetases , Leucina-tRNA Ligase , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Adenosina/farmacologia , Leucina-tRNA Ligase/genética , Antibacterianos/farmacologia
6.
Nucleic Acids Res ; 48(9): 4946-4959, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32232361

RESUMO

Human cytosolic leucyl-tRNA synthetase (hcLRS) is an essential and multifunctional enzyme. Its canonical function is to catalyze the covalent ligation of leucine to tRNALeu, and it may also hydrolyze mischarged tRNAs through an editing mechanism. Together with eight other aminoacyl-tRNA synthetases (AaRSs) and three auxiliary proteins, it forms a large multi-synthetase complex (MSC). Beyond its role in translation, hcLRS has an important moonlight function as a leucine sensor in the rapamycin complex 1 (mTORC1) pathway. Since this pathway is active in cancer development, hcLRS is a potential target for anti-tumor drug development. Moreover, LRS from pathogenic microbes are proven drug targets for developing antibiotics, which however should not inhibit hcLRS. Here we present the crystal structure of hcLRS at a 2.5 Å resolution, the first complete structure of a eukaryotic LRS, and analyze the binding of various compounds that target different sites of hcLRS. We also deduce the assembly mechanism of hcLRS into the MSC through reconstitution of the entire mega complex in vitro. Overall, our study provides the molecular basis for understanding both the multifaceted functions of hcLRS and for drug development targeting these functions.


Assuntos
Leucina-tRNA Ligase/química , Anti-Infecciosos/química , Biocatálise , Domínio Catalítico , Desenho de Fármacos , Humanos , Leucina-tRNA Ligase/efeitos dos fármacos , Leucina-tRNA Ligase/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Domínios Proteicos , RNA de Transferência de Leucina/metabolismo , Aminoacilação de RNA de Transferência
7.
Sci Transl Med ; 11(517)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694928

RESUMO

Cryptosporidium is an intestinal pathogen that causes severe but self-limiting diarrhea in healthy humans, yet it can turn into a life-threatening, unrelenting infection in immunocompromised patients and young children. Severe diarrhea is recognized as the leading cause of mortality for children below 5 years of age in developing countries. The only approved treatment against cryptosporidiosis, nitazoxanide, has limited efficacy in the most vulnerable patient populations, including malnourished children, and is ineffective in immunocompromised individuals. Here, we investigate inhibition of the parasitic cleavage and polyadenylation specificity factor 3 (CPSF3) as a strategy to control Cryptosporidium infection. We show that the oxaborole AN3661 selectively blocked Cryptosporidium growth in human HCT-8 cells, and oral treatment with AN3661 reduced intestinal parasite burden in both immunocompromised and neonatal mouse models of infection with greater efficacy than nitazoxanide. Furthermore, we present crystal structures of recombinantly produced Cryptosporidium CPSF3, revealing a mechanism of action whereby the mRNA processing activity of this enzyme is efficiently blocked by the binding of the oxaborole group at the metal-dependent catalytic center. Our data provide insights that may help accelerate the development of next-generation anti-Cryptosporidium therapeutics.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Criptosporidiose/genética , Criptosporidiose/parasitologia , Cryptosporidium/genética , Metais/química , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Animais , Antiparasitários/química , Antiparasitários/farmacologia , Linhagem Celular Tumoral , Fator de Especificidade de Clivagem e Poliadenilação/química , Cristalização , Humanos , Íleo/parasitologia , Íleo/ultraestrutura , Camundongos Endogâmicos C57BL , Modelos Moleculares , Proteínas Recombinantes/metabolismo
8.
Sci Rep ; 9(1): 15076, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636332

RESUMO

The recognition of PPxY viral Late domains by the third WW domain of the HECT-E3 ubiquitin ligase NEDD4 (hNEDD4-WW3) is essential for the completion of the budding process of numerous enveloped viruses, including Ebola, Marburg, HTLV1 or Rabies. hNEDD4-WW3 has been validated as a promising target for the development of novel host-oriented broad spectrum antivirals. Nonetheless, finding inhibitors with good properties as therapeutic agents remains a challenge since the key determinants of binding affinity and specificity are still poorly understood. We present here a detailed structural and thermodynamic study of the interactions of hNEDD4-WW3 with viral Late domains combining isothermal titration calorimetry, NMR structural determination and molecular dynamics simulations. Structural and energetic differences in Late domain recognition reveal a highly plastic hNEDD4-WW3 binding site that can accommodate PPxY-containing ligands with varying orientations. These orientations are mostly determined by specific conformations adopted by residues I859 and T866. Our results suggest a conformational selection mechanism, extensive to other WW domains, and highlight the functional relevance of hNEDD4-WW3 domain conformational flexibility at the binding interface, which emerges as a key element to consider in the search for potent and selective inhibitors of therapeutic interest.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/química , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteínas Virais/química , Motivos de Aminoácidos , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Termodinâmica
9.
Nat Commun ; 7: 12928, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713402

RESUMO

Antibiotic-producing microbes evolved self-resistance mechanisms to avoid suicide. The biocontrol Agrobacterium radiobacter K84 secretes the Trojan Horse antibiotic agrocin 84 that is selectively transported into the plant pathogen A. tumefaciens and processed into the toxin TM84. We previously showed that TM84 employs a unique tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase (LeuRS), while the TM84-producer prevents self-poisoning by expressing a resistant LeuRS AgnB2. We now identify a mechanism by which the antibiotic-producing microbe resists its own toxin. Using a combination of structural, biochemical and biophysical approaches, we show that AgnB2 evolved structural changes so as to resist the antibiotic by eliminating the tRNA-dependence of TM84 binding. Mutagenesis of key resistance determinants results in mutants adopting an antibiotic-sensitive phenotype. This study illuminates the evolution of resistance in self-immunity genes and provides mechanistic insights into a fascinating tRNA-dependent antibiotic with applications for the development of anti-infectives and the prevention of biocontrol emasculation.


Assuntos
Agrobacterium tumefaciens/genética , Farmacorresistência Bacteriana/genética , Evolução Molecular , Leucina-tRNA Ligase/antagonistas & inibidores , Leucina-tRNA Ligase/genética , Genes Bacterianos , Cinética , Leucina-tRNA Ligase/metabolismo , Controle Biológico de Vetores , Tumores de Planta/microbiologia , RNA de Transferência/metabolismo
10.
J Phys Chem B ; 120(19): 4388-98, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27115861

RESUMO

Leucyl-tRNA synthetase catalyzes attachment of leucine amino acid to its cognate tRNA. During the second, aminoacetylation, step of the reaction, the leucyl moiety is transferred from leucyl-adenylate to the terminal A76 adenosine of tRNA. In this work, we have investigated the aminoacetylation step catalyzed by leucyl-tRNA synthase, using ab initio quantum chemical/molecular mechanical hybrid potentials in conjunction with reaction-path-location algorithms and molecular dynamics free energy simulations. We have modeled reaction mechanisms arising from both crystallographic studies and computational work. We invoke various groups as potential proton acceptors-namely, the phosphate and leucyl amino groups of leucyl-adenylate, the A76 base of tRNA, and the Asp80 and Glu532 residues of the protein-and consider both metal-assisted and metal-free reactions. Free energy calculations indicate that both the phosphate group of leucyl adenylate and Glu532 are not strong bases. This agrees with the results of the quantum chemical/molecular mechanical reaction path calculations which give high free energy barriers for the studied pathways involving these groups. A self-assisted mechanism with the leucyl amino group and Asp80 as proton acceptors is the most likely. Furthermore, in this mechanism the presence of a metal ion coordinated by the phosphate group and Glu532 strongly activates the reaction.


Assuntos
Leucina-tRNA Ligase/metabolismo , Acetilação , Biocatálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Leucina-tRNA Ligase/química , Metais/química , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Teoria Quântica , Especificidade por Substrato , Termodinâmica , Água/química , Água/metabolismo
11.
J Biol Chem ; 289(46): 31765-31776, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25274629

RESUMO

The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Proteínas de Transporte/química , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a Selênio/química , Selênio/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cisteína/química , Humanos , Ligantes , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Termodinâmica
12.
Nucleic Acids Res ; 41(7): 4241-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435228

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through RNA interference. Human miRNAs are generated through a series of enzymatic processing steps. The precursor miRNA (pre-miRNA) is recognized and cleaved by a complex containing Dicer and several non-catalytic accessory proteins. HIV TAR element binding protein (TRBP) is a constituent of the Dicer complex, which augments complex stability and potentially functions in substrate recognition and product transfer to the RNA-induced silencing complex. Here we have analysed the interaction between the RNA-binding region of TRBP and an oncogenic human miRNA, miR-155, at different stages in the biogenesis pathway. We show that the region of TRBP that binds immature miRNAs comprises two independent double-stranded RNA-binding domains connected by a 60-residue flexible linker. No evidence of contact between the two double-stranded RNA-binding domains was observed either in the apo- or RNA-bound state. We establish that the RNA-binding region of TRBP interacts with both pre-miR-155 and the miR-155/miR-155* duplex through the same binding surfaces and with similar affinities, and that two protein molecules can simultaneously interact with each immature miRNA. These data suggest that TRBP could play a role before and after processing of pre-miRNAs by Dicer.


Assuntos
MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Humanos , Estrutura Terciária de Proteína , Ribonuclease III/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(10): 3817-22, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431144

RESUMO

Mycoplasma leucyl-tRNA synthetases (LeuRSs) have been identified in which the connective polypeptide 1 (CP1) amino acid editing domain that clears mischarged tRNAs are missing (Mycoplasma mobile) or highly degenerate (Mycoplasma synoviae). Thus, these enzymes rely on a clearance pathway called pretransfer editing, which hydrolyzes misactivated aminoacyl-adenylate intermediate via a nebulous mechanism that has been controversial for decades. Even as the sole fidelity pathway for clearing amino acid selection errors in the pathogenic M. mobile, pretransfer editing is not robust enough to completely block mischarging of tRNA(Leu), resulting in codon ambiguity and statistical proteins. A high-resolution X-ray crystal structure shows that M. mobile LeuRS structurally overlaps with other LeuRS cores. However, when CP1 domains from different aminoacyl-tRNA synthetases and origins were fused to this common LeuRS core, surprisingly, pretransfer editing was enhanced. It is hypothesized that the CP1 domain evolved as a molecular rheostat to balance multiple functions. These include distal control of specificity and enzyme activity in the ancient canonical core, as well as providing a separate hydrolytic active site for clearing mischarged tRNA.


Assuntos
Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/metabolismo , Mycoplasma/genética , Mycoplasma/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Códon/genética , Códon/metabolismo , Cristalografia por Raios X , Leucina-tRNA Ligase/genética , Modelos Moleculares , Dados de Sequência Molecular , Mycoplasma/patogenicidade , Mycoplasma synoviae/enzimologia , Mycoplasma synoviae/genética , Conformação Proteica , Estrutura Terciária de Proteína , Edição de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
14.
Nat Commun ; 4: 1417, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23361008

RESUMO

Leucyl-tRNA synthetases (LeuRSs) have an essential role in translation and are promising targets for antibiotic development. Agrocin 84 is a LeuRS inhibitor produced by the biocontrol agent Agrobacterium radiobacter K84 that targets pathogenic strains of A. tumefaciens, the causative agent of plant tumours. Agrocin 84 acts as a molecular Trojan horse and is processed inside the pathogen into a toxic moiety (TM84). Here we show using crystal structure, thermodynamic and kinetic analyses, that this natural antibiotic employs a unique and previously undescribed mechanism to inhibit LeuRS. TM84 requires tRNA(Leu) for tight binding to the LeuRS synthetic active site, unlike any previously reported inhibitors. TM84 traps the enzyme-tRNA complex in a novel 'aminoacylation-like' conformation, forming novel interactions with the KMSKS loop and the tRNA 3'-end. Our findings reveal an intriguing tRNA-dependent inhibition mechanism that may confer a distinct evolutionary advantage in vivo and inform future rational antibiotic design.


Assuntos
Nucleotídeos de Adenina/farmacologia , Agrobacterium tumefaciens/enzimologia , Agentes de Controle Biológico , Leucina-tRNA Ligase/antagonistas & inibidores , Tumores de Planta/microbiologia , RNA de Plantas/metabolismo , RNA de Transferência/metabolismo , Nucleotídeos de Adenina/química , Agrobacterium tumefaciens/efeitos dos fármacos , Aminoacilação/efeitos dos fármacos , Calorimetria , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/metabolismo , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Plantas/química , RNA de Transferência/química
15.
J Biol Chem ; 285(4): 2823-33, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19906645

RESUMO

The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design.


Assuntos
Prolina/química , Proteínas Proto-Oncogênicas c-abl , Água/química , Domínios de Homologia de src/fisiologia , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Mutagênese , Prolina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Água/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 5): 646-52, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17452790

RESUMO

The recognition of proline-rich ligands by SH3 domains is part of the process leading to diseases such as cancer or AIDS. Understanding the molecular determinants of the binding affinity and specificity of these interactions is crucial for the development of potent inhibitors with therapeutic potential. In this study, the crystallographic structure of the N114A mutant of the SH3 domain of the Abelson leukaemia virus tyrosine kinase complexed with a high-affinity peptide is presented. The crystallization was carried out using the capillary counter-diffusion technique, which facilitates the screening, manipulation and transport of the crystals and allows the collection of X-ray data directly from the capillary in which the crystals were grown. The crystals of the N114A mutant belong to the orthorhombic P2(1)2(1)2(1) space group, with unit-cell parameters a = 48.2, b = 50.1, c = 56.4 A. The quality of the diffraction data set has allowed the structure of the complex to be determined at a resolution limit of 1.75 A.


Assuntos
Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-abl/química , Cristalização , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo , Domínios de Homologia de src
17.
J Mol Biol ; 336(2): 527-37, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14757063

RESUMO

The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.


Assuntos
Desenho de Fármacos , Peptídeos/química , Peptídeos/metabolismo , Prolina/metabolismo , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Domínios de Homologia de src/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Ligação Proteica , Prótons , Solventes/química , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA