Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077755

RESUMO

Pancreatic cancer has a complex tumor microenvironment which engages in extensive crosstalk between cancer cells, cancer-associated fibroblasts, and immune cells. Many of these interactions contribute to tumor resistance to anti-cancer therapies. Here, new therapeutic strategies designed to modulate the cancer-associated fibroblast and immune compartments of pancreatic ductal adenocarcinomas are described and clinical trials of novel therapeutics are discussed. Continued advances in our understanding of the pancreatic cancer tumor microenvironment are generating stromal and immune-modulating therapeutics that may improve patient responses to anti-tumor treatment.

3.
PLoS One ; 13(12): e0209067, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30576355

RESUMO

Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepatoma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0-1000 µg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects were detected in all cell lines, EGb761 promoted anti-proliferative and pro-apoptotic effects mainly in hepatoma cells. Consistently, EGb761 treatment caused a significant reduction in colony and sphere forming ability in hepatoma cells and no mentionable changes in IH. Transcriptomic changes involved oxidative stress response as well as key oncogenic pathways resembling Nrf2- and mTOR signaling pathway. Taken together, EGb761 induces differential effects in non-transformed and cancer cells. While treatment confers protective effects in non-malignant cells, EGb761 significantly impairs tumorigenic properties in cancer cells by affecting key oncogenic pathways. Results provide the rational for clinical testing of EGb761 in preventive and therapeutic strategies in human liver diseases.


Assuntos
Carcinogênese/efeitos dos fármacos , Ginkgo biloba/química , Extratos Vegetais/farmacologia , Transcriptoma/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ginkgo biloba/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
4.
J Cell Physiol ; 233(12): 9354-9364, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29341114

RESUMO

Acute pancreatitis is a multifactorial disease associated with profound changes of the pancreas induced by release of digestive enzymes that lead to increase in proinflammatory cytokine production, excessive tissue necrosis, edema, and bleeding. Elevated levels of hepatocyte growth factor (HGF) and its receptor c-Met have been observed in different chronic and acute pancreatic diseases including experimental models of acute pancreatitis. In the present study, we investigated the protective effects induced by the recombinant human HGF in a mouse model of cerulein-induced acute pancreatitis. Pancreatitis was induced by 8 hourly administrations of supramaximal cerulein injections (50 µg/kg, ip). HGF treatment (20 µg/kg, iv), significantly attenuated lipase content and amylase activity in serum as well as the degree inflammation and edema overall leading to less severe histologic changes such as necrosis, induced by cerulein. Protective effects of HGF were associated with activation of pro-survival pathways such as Akt, Erk1/2, and Nrf2 and increase in executor survival-related proteins and decrease in pro-apoptotic proteins. In addition, ROS content and lipid peroxidation were diminished, and glutathione synthesis increased in pancreas. Systemic protection was observed by lung histology. In conclusion, our data indicate that HGF exerts an Nrf2 and glutathione-mediated protective effect on acute pancreatitis reflected by a reduction in inflammation, edema, and oxidative stress.


Assuntos
Fator de Crescimento de Hepatócito/uso terapêutico , Pancreatite/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Ceruletídeo , Modelos Animais de Doenças , Glutationa/biossíntese , Fator de Crescimento de Hepatócito/sangue , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pancreatite/patologia , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida
5.
Food Chem Toxicol ; 69: 102-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24746671

RESUMO

Alcohol is undoubtedly, the main toxic agent that people consume by recreation and the abuse is associated with liver damage, mainly by the overproduction of reactive oxygen species and the toxic effects of its first metabolite acetaldehyde. It is known that acetaldehyde targets mitochondria inducing redox imbalance and oxidative stress. Mitochondrial superoxide dismutase transforms superoxide radical into hydrogen peroxide, which in addition, is transformed in water by other enzymes. In the present study we demonstrate that acetaldehyde transiently impairs SOD2 activity in HepG2 cells, the decrease in the enzyme activity was associated to a reduction in the protein content, which was rapidly recovered, to basal values, by synthesis de novo in a mechanism mediated by NF-κB and PKC. The SOD2 impairment was not associated with adduct formation. The recovery on SOD2 activity in HepG2 cells can represent survival advantage for cancer cells, the results shown that SOD2 could be considered a therapeutic target in liver cancer.


Assuntos
Acetaldeído/farmacologia , Células Hep G2/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Células Hep G2/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA