RESUMO
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape.
RESUMO
The impact of human IgE glycosylation on structure, function and disease mechanisms is not fully elucidated, and heterogeneity in different studies renders drawing conclusions challenging. Previous reviews discussed IgE glycosylation focusing on specific topics such as health versus disease, FcεR binding or impact on function. We present the first systematic review of human IgE glycosylation conducted utilizing the PRISMA guidelines. We sought to define the current consensus concerning the roles of glycosylation on structure, biology and disease. Despite diverse analytical methodologies, source, expression systems and the sparsity of data on IgE antibodies from non-allergic individuals, collectively evidence suggests differential glycosylation profiles, particularly in allergic diseases compared with healthy states, and indicates functional impact, and contributions to IgE-mediated hypersensitivities and atopic diseases. Beyond allergic diseases, dysregulated terminal glycan structures, including sialic acid, may regulate IgE metabolism. Glycan sites such as N394 may contribute to stabilizing IgE structure, with alterations in these glycans likely influencing both structure and IgE-FcεR interactions. This systematic review therefore highlights critical IgE glycosylation attributes in health and disease that may be exploitable for therapeutic intervention, and the need for novel analytics to explore pertinent research avenues.
Assuntos
Imunoglobulina E , Animais , Humanos , Glicosilação , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/química , Relação Estrutura-AtividadeRESUMO
Outcomes for half of patients with melanoma remain poor despite standard-of-care checkpoint inhibitor therapies. The prevalence of the melanoma-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) expression is ~70%, therefore effective immunotherapies directed at CSPG4 could benefit many patients. Since IgE exerts potent immune-activating functions in tissues, we engineer a monoclonal IgE antibody with human constant domains recognizing CSPG4 to target melanoma. CSPG4 IgE binds to human melanomas including metastases, mediates tumoricidal antibody-dependent cellular cytotoxicity and stimulates human IgE Fc-receptor-expressing monocytes towards pro-inflammatory phenotypes. IgE demonstrates anti-tumor activity in human melanoma xenograft models engrafted with human effector cells and is associated with enhanced macrophage infiltration, enriched monocyte and macrophage gene signatures and pro-inflammatory signaling pathways in the tumor microenvironment. IgE prolongs the survival of patient-derived xenograft-bearing mice reconstituted with autologous immune cells. No ex vivo activation of basophils in patient blood is measured in the presence of CSPG4 IgE. Our findings support a promising IgE-based immunotherapy for melanoma.
Assuntos
Melanoma , Proteoglicanas , Humanos , Camundongos , Animais , Proteoglicanas/metabolismo , Antígenos , Proteoglicanas de Sulfatos de Condroitina , Melanoma/metabolismo , Anticorpos Monoclonais/farmacologia , Imunoglobulina E , Microambiente TumoralRESUMO
BACKGROUND: Survival rates for ovarian cancer remain poor, and monitoring and prediction of therapeutic response may benefit from additional markers. Ovarian cancers frequently overexpress Folate Receptor alpha (FRα) and the soluble receptor (sFRα) is measurable in blood. Here we investigated sFRα as a potential biomarker. METHODS: We evaluated sFRα longitudinally, before and during neo-adjuvant, adjuvant and palliative therapies, and tumour FRα expression status by immunohistrochemistry. The impact of free FRα on the efficacy of anti-FRα treatments was evaluated by an antibody-dependent cellular cytotoxicity assay. RESULTS: Membrane and/or cytoplasmic FRα staining were observed in 52.7% tumours from 316 ovarian cancer patients with diverse histotypes. Circulating sFRα levels were significantly higher in patients, compared to healthy volunteers, specifically in patients sampled prior to neoadjuvant and palliative treatments. sFRα was associated with FRα cell membrane expression in the tumour. sFRα levels decreased alongside concurrent tumour burden in patients receiving standard therapies. High concentrations of sFRα partly reduced anti-FRα antibody tumour cell killing, an effect overcome by increased antibody doses. CONCLUSIONS: sFRα may present a non-invasive marker for tumour FRα expression, with the potential for monitoring patient response to treatment. Larger, prospective studies should evaluate FRα for assessing disease burden and response to systemic treatments.
Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/uso terapêutico , Neoplasias Ovarianas/patologia , Estudos Prospectivos , Resultado do TratamentoRESUMO
Despite comprising a very small proportion of circulating blood leukocytes, basophils are potent immune effector cells. The high-affinity receptor for IgE (FcÉRI) is expressed on the basophil cell surface and powerful inflammatory mediators such as histamine, granzyme B, and cytokines are stored in dense cytoplasmic granules, ready to be secreted in response to a range of immune stimuli. Basophils play key roles in eliciting potent effector functions in allergic diseases and type 1 hypersensitivity. Beyond allergies, basophils can be recruited to tissues in chronic and autoimmune inflammation, and in response to parasitic, bacterial, and viral infections. While their activation states and functions can be influenced by Th2-biased inflammatory signals, which are also known features of several tumor types, basophils have received little attention in cancer. Here, we discuss the presence and functional significance of basophils in the circulation of cancer patients and in the tumor microenvironment (TME). Interrogating publicly available datasets, we conduct gene expression analyses to explore basophil signatures and associations with clinical outcomes in several cancers. Furthermore, we assess how basophils can be harnessed to predict hypersensitivity to cancer treatments and to monitor the desensitization of patients to oncology drugs, using assays such as the basophil activation test (BAT).
Assuntos
Hipersensibilidade , Neoplasias , Basófilos , Citocinas/metabolismo , Humanos , Neoplasias/metabolismo , Microambiente TumoralRESUMO
Thrombin triggers cellular responses that are crucial for development and progression of cancer, such as proliferation, migration, oncogene expression and angiogenesis. Thus, biomolecules capable of inhibiting this protease have become targets in cancer research. The present work describes the in vitro antitumor properties of a chondroitin sulfate with anti-thrombin activity, isolated from the Litopenaeus vannamei shrimp (sCS). Although the compound was unable to induce cytotoxicity or cell death and/or cell cycle changes after 24 h incubation, it showed a long-term antiproliferative effect, reducing the tumor colony formation of melanoma cells by 75% at 100 µg/mL concentration and inhibiting the anchorage-independent colony formation. sCS reduced 66% of melanoma cell migration in the wound healing assay and 70% in the transwell assay. The compound also decreased melanin and TNF-α content of melanoma cells by 52% and 75% respectively. Anti-angiogenic experiments showed that sCS promoted 100% reduction of tubular structure formation at 100 µg/mL. These results are in accordance with the sCS-mediated in vitro expression of genes related to melanoma development (Cx-43, MAPK, RhoA, PAFR, NFKB1 and VEGFA). These findings bring a new insight to CS molecules in cancer biology that can contribute to ongoing studies for new approaches in designing anti-tumor therapy.
Assuntos
Inibidores da Angiogênese , Antineoplásicos , Sulfatos de Condroitina , Melanoma Experimental/tratamento farmacológico , Penaeidae/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Sulfatos de Condroitina/farmacologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , CoelhosRESUMO
In this present study, the anti-IIa activity and the antitumor properties of a hybrid heparin/heparan sulfate-like compound (sH/HS) from Litopenaeus vannamei shrimp heads are related. In addition to inhibiting 90.7% of thrombin activity at the lowest tested concentration (0.5⯵g/mL), sH/HS compound stimulated the synthesis of antithrombotic heparan sulfate by endothelial cells in a dose-dependent manner. In vitro experiments demonstrated that the molecule from shrimp displayed a potent anti-angiogenic effect, reducing over 80% of the tubular structures formation at 50 and 100⯵g/mL. In addition, sH/HS compound was able to inhibit the migration of B16F10 cells at all tested concentrations without affecting the cell viability. Although the studied compound had no effect on the proliferation of such cells during a period of 24â¯h, it had a significant long-term anti-proliferative effect, reducing about 80% of colony formation and anchorage-independent growth at 50 and 100⯵g/mL concentrations. When its effectiveness was tested in vivo, it was demonstrated that sH/HS promoted a reduction of more than 90% of tumor growth. In the context of thromboembolic disorders associated with cancer, such findings make the sH/HS compound an excellent target for studies on inhibiting of development and tumor progression, and the prevention of coagulopathies.