Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339019

RESUMO

The advent of immune checkpoint inhibitors (ICIs) has represented a breakthrough in the treatment of many cancers, although a high number of patients fail to respond to ICIs, which is partially due to the ability of tumor cells to evade immune system surveillance. Non-coding microRNAs (miRNAs) have been shown to modulate the immune evasion of tumor cells, and there is thus growing interest in elucidating whether these miRNAs could be targetable or proposed as novel biomarkers for prognosis and treatment response to ICIs. We therefore performed an extensive literature analysis to evaluate the clinical utility of miRNAs with a confirmed direct relationship with treatment response to ICIs. As a result of this systematic review, we have stratified the miRNA landscape into (i) miRNAs whose levels directly modulate response to ICIs, (ii) miRNAs whose expression is modulated by ICIs, and (iii) miRNAs that directly elicit toxic effects or participate in immune-related adverse events (irAEs) caused by ICIs.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Vigilância Imunológica , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
Redox Biol ; 64: 102801, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37418888

RESUMO

The high recurrence rate of cystine lithiasis observed in cystinuria patients highlights the need for new therapeutic options to address this chronic disease. There is growing evidence of an antioxidant defect in cystinuria, which has led to test antioxidant molecules as new therapeutic approaches. In this study, the antioxidant l-Ergothioneine was evaluated, at two different doses, as a preventive and long-term treatment for cystinuria in the Slc7a9-/- mouse model. l-Ergothioneine treatments decreased the rate of stone formation by more than 60% and delayed its onset in those mice that still developed calculi. Although there were no differences in metabolic parameters or urinary cystine concentration between control and treated mice, cystine solubility was increased by 50% in the urines of treated mice. We also demonstrate that l-Ergothioneine needs to be internalized by its transporter OCTN1 (Slc22a4) to be effective, as when administrated to the double mutant Slc7a9-/-Slc22a4-/- mouse model, no effect on the lithiasis phenotype was observed. In kidneys, we detected a decrease in GSH levels and an impairment of maximal mitochondrial respiratory capacity in cystinuric mice that l-Ergothioneine treatment was able to restore. Thus, l-Ergothioneine administration prevented cystine lithiasis in the Slc7a9-/- mouse model by increasing urinary cystine solubility and recovered renal GSH metabolism and mitochondrial function. These results support the need for clinical trials to test l-Ergothioneine as a new treatment for cystinuria.


Assuntos
Cistinúria , Ergotioneína , Litíase , Animais , Camundongos , Ergotioneína/farmacologia , Litíase/prevenção & controle , Cistinúria/tratamento farmacológico , Cistina , Antioxidantes/farmacologia , Camundongos Knockout , Masculino , Feminino , Camundongos Endogâmicos C57BL , Glutationa/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo
4.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555526

RESUMO

Chronic gut inflammation in Crohn's disease (CD) is associated with an increase in oxidative stress and an imbalance of antioxidant enzymes. We have previously shown that catalase (CAT) activity is permanently inhibited by CD. The purpose of the study was to determine whether there is any relationship between the single nucleotide polymorphisms (SNPs) in the CAT enzyme and the potential risk of CD associated with high levels of oxidative stress. Additionally, we used protein and regulation analyses to determine what causes long-term CAT inhibition in peripheral white mononuclear cells (PWMCs) in both active and inactive CD. We first used a retrospective cohort of 598 patients with CD and 625 age-matched healthy controls (ENEIDA registry) for the genotype analysis. A second human cohort was used to study the functional and regulatory mechanisms of CAT in CD. We isolated PWMCs from CD patients at the onset of the disease (naïve CD patients). In the genotype-association SNP analysis, the CAT SNPs rs1001179, rs475043, and rs525938 showed a significant association with CD (p < 0.001). Smoking CD patients with the CAT SNP rs475043 A/G genotype had significantly more often penetrating disease (p = 0.009). The gene expression and protein levels of CAT were permanently reduced in the active and inactive CD patients. The inhibition of CAT activity in the PWMCs of the CD patients was related to a low concentration of CAT protein caused by the downregulation of CAT-gene transcription. Our study suggests an association between CAT SNPs and the risk of CD that may explain permanent CAT inhibition in CD patients together with low CAT gene and protein expression.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/metabolismo , Catalase/genética , Catalase/metabolismo , Estudos Retrospectivos , Antioxidantes/metabolismo , Genótipo , Inflamação/complicações , Variação Genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Estudos de Casos e Controles
5.
Front Cell Dev Biol ; 10: 879814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813211

RESUMO

Renal cell carcinoma is the most common type of kidney cancer, representing 90% of kidney cancer diagnoses, and the deadliest urological cancer. While the incidence and mortality rates by renal cell carcinoma are higher in men compared to women, in both sexes the clinical characteristics are the same, and usually unspecific, thereby hindering and delaying the diagnostic process and increasing the metastatic potential. Regarding treatment, surgical resection remains the main therapeutic strategy. However, even after radical nephrectomy, metastasis may still occur in some patients, with most metastatic renal cell carcinomas being resistant to chemotherapy and radiotherapy. Therefore, the identification of new biomarkers to help clinicians in the early detection, and treatment of renal cell carcinoma is essential. In this review, we describe circRNAs related to renal cell carcinoma processes reported to date and propose the use of some in therapeutic strategies for renal cell carcinoma treatment.

6.
Cancers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36612180

RESUMO

In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.

7.
Curr Protein Pept Sci ; 22(9): 675-694, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34514988

RESUMO

The approval of istradefylline, an adenosine 2A receptor (A2AR) antagonist, as an addon treatment in adult patients with Parkinson's disease by the Food and Drug Administration (FDA) and European Medicines Agency (EMA), is the latest proof of the importance of the adenosinergic system in the nervous system. Adenosine is an endogenous purine nucleoside with a role as a modulator of both neurotransmission and the inflammatory response. As such, the expression pattern of the 4 adenosine receptors (A1R, A2AR, A2BR and A3R) and the extracellular adenosine levels have attracted great interest in the pathogenesis and possible treatment of rare neurodegenerative diseases with motor symptoms. These include Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Restless Legs Syndrome (RLS) and Machado-Joseph Disease (MJD, also known as spinocerebellar ataxia type 3, SCA3). In this review, we shall focus on the role of the different adenosine receptor subtypes in the development and possible treatment of the aforementioned rare neurodegenerative diseases with motor symptoms using the currently available data. The last section discusses the possibility of a role for the adenosine receptors in the treatment of other rare diseases based on the available molecular pathology knowledge.


Assuntos
Doenças Neurodegenerativas
8.
Free Radic Biol Med ; 170: 6-18, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33689846

RESUMO

Epigenetic regulation of gene expression provides a finely tuned response capacity for cells when undergoing environmental changes. However, in the context of human physiology or disease, any cellular imbalance that modulates homeostasis has the potential to trigger molecular changes that result either in physiological adaptation to a new situation or pathological conditions. These effects are partly due to alterations in the functionality of epigenetic regulators, which cause long-term and often heritable changes in cell lineages. As such, free radicals resulting from unbalanced/extended oxidative stress have been proved to act as modulators of epigenetic agents, resulting in alterations of the epigenetic landscape. In the present review we will focus on the particular effect that oxidative stress and free radicals produce in histone post-translational modifications that contribute to altering the histone code and, consequently, gene expression. The pathological consequences of the changes in this epigenetic layer of regulation of gene expression are thoroughly evidenced by data gathered in many physiological adaptive processes and in human diseases that range from age-related neurodegenerative pathologies to cancer, and that include respiratory syndromes, infertility, and systemic inflammatory conditions like sepsis.


Assuntos
Epigênese Genética , Histonas , Metilação de DNA , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Estresse Oxidativo , Processamento de Proteína Pós-Traducional
9.
Redox Biol ; 40: 101860, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33445068

RESUMO

Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients' cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mitochondrial dysfunction. The fact that FA proteins are encoded by nuclear, not mitochondrial DNA does not prevent these proteins to hamper mitochondrial function, as it is recognized that most mitochondrial proteins are of nuclear origin. This body of evidence supporting a central role of mitochondrial dysfunction, along with redox imbalance in FA, should lead to the re-definition of FA as a mitochondrial disease. A body of literature has demonstrated the beneficial effects of mitochondrial cofactors, such as α-lipoic acid, coenzyme Q10, and carnitine on patients affected by mitochondrial diseases. Altogether, this re-definition of FA as a mitochondrial disease and the prospect use of mitochondrial nutrients may open new gateways toward mitoprotective strategies for FA patients. These strategies are expected to mitigate the mitochondrial dysfunction and prooxidant state in FA patients, and potentially protect transplanted FA patients from post-transplantation malignancies.


Assuntos
Anemia de Fanconi , Doenças Mitocondriais , Anemia de Fanconi/genética , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Mitomicina , Fenótipo , Proteínas
10.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118845, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910990

RESUMO

Mutations in DKC1, NOP10, and TINF2 genes, coding for proteins in telomerase and shelterin complexes, are responsible for diverse diseases known as telomeropathies and ribosomopathies, including dyskeratosis congenita (DC, ORPHA 1775). These genes contribute to the DC phenotype through mechanisms that are not completely understood. We previously demonstrated in models of DC that oxidative stress is an early and independent event that occurs prior to telomere shortening. To clarify the mechanisms that induce oxidative stress, we silenced genes DKC1, NOP10, and TINF2 with siRNA technology. With RNA array hybridisation, we found several altered pathways for each siRNA model. Afterwards, we identified common related genes. The silenced cell line with the most deregulated genes and pathways was siNOP10, followed by siDKC1, and then by siTINF2 to a lesser extent. The siDKC1 and siNOP10 models shared altered expression of genes in the p53 pathway, while siNOP10 and siTINF2 had the adherens junction pathway in common. We also observed that depletion of DKC1 and NOP10 H/ACA ribonucleoprotein produced ribosomal biogenesis impairment which, in turn, promoted p53 pathway activation. Finally, we found that those enzymes responsible for GSH synthesis were down-regulated in models of siDKC1 and siNOP10. In contrast, the silenced cells for TINF2 showed no disruption of ribosomal biogenesis or oxidative stress and did not produce p53 pathway activation. These results indicate that depletion of DKC1 and NOP10 promotes oxidative stress and disrupts ribosomal biogenesis which, in turn, activates the p53 pathway.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Estresse Oxidativo/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Mutação/genética , Nucleofosmina , RNA Interferente Pequeno , Ribossomos/genética , Complexo Shelterina , Telomerase/genética , Telômero/genética , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/genética
11.
Sci Rep ; 10(1): 5207, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251310

RESUMO

Abnormalities in actin cytoskeleton have been linked to Friedreich's ataxia (FRDA), an inherited peripheral neuropathy characterised by an early loss of neurons in dorsal root ganglia (DRG) among other clinical symptoms. Despite all efforts to date, we still do not fully understand the molecular events that contribute to the lack of sensory neurons in FRDA. We studied the adult neuronal growth cone (GC) at the cellular and molecular level to decipher the connection between frataxin and actin cytoskeleton in DRG neurons of the well-characterised YG8R Friedreich's ataxia mouse model. Immunofluorescence studies in primary cultures of DRG from YG8R mice showed neurons with fewer and smaller GCs than controls, associated with an inhibition of neurite growth. In frataxin-deficient neurons, we also observed an increase in the filamentous (F)-actin/monomeric (G)-actin ratio (F/G-actin ratio) in axons and GCs linked to dysregulation of two crucial modulators of filamentous actin turnover, cofilin-1 and the actin-related protein (ARP) 2/3 complex. We show how the activation of cofilin is due to the increase in chronophin (CIN), a cofilin-activating phosphatase. Thus cofilin emerges, for the first time, as a link between frataxin deficiency and actin cytoskeleton alterations.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cofilina 1/fisiologia , Ataxia de Friedreich/metabolismo , Cones de Crescimento/ultraestrutura , Proteínas de Ligação ao Ferro/genética , Citoesqueleto de Actina/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Axônios/química , Células Cultivadas , Modelos Animais de Doenças , Ataxia de Friedreich/genética , Gânglios Espinais/patologia , Camundongos , Camundongos Mutantes Neurológicos , Proteínas dos Microfilamentos/metabolismo , Mutação de Sentido Incorreto , Neuritos/ultraestrutura , Neurônios/ultraestrutura , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Fosfosserina/metabolismo , Processamento de Proteína Pós-Traducional , Frataxina
12.
Semin Fetal Neonatal Med ; 25(2): 101090, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32014366

RESUMO

Preterm infants frequently require positive pressure ventilation and oxygen supplementation in the first minutes after birth. It has been shown that the amount of oxygen provided during stabilization, the oxygen load, if excessive may cause hyperoxia, and oxidative damage to DNA. Epidemiologic studies have associated supplementation with pure oxygen in the first minutes after birth with childhood cancer. Recent studies have shown that the amount of oxygen supplemented to preterm infants after birth modifies the epigenome. Of note, the degree of DNA hyper-or hypomethylation correlates with the oxygen load provided upon stabilization. If these epigenetic modifications would persist, oxygen supplied in the first minutes after birth could have long term consequences. Further studies with a robust power calculation and long-term follow up are needed to bear out the long-term consequences of oxygen supplementation during postnatal stabilization of preterm infants.


Assuntos
Epigênese Genética/efeitos dos fármacos , Recém-Nascido Prematuro , Estresse Oxidativo/fisiologia , Oxigenoterapia , Oxigênio , Criança , Dano ao DNA/fisiologia , Epigênese Genética/fisiologia , Humanos , Hiperóxia/congênito , Hiperóxia/etiologia , Hiperóxia/metabolismo , Lactente , Recém-Nascido , Recém-Nascido Prematuro/metabolismo , Neonatologia/métodos , Oxigênio/análise , Oxigênio/metabolismo , Oxigênio/farmacologia , Oxigênio/uso terapêutico , Oxigenoterapia/efeitos adversos , Oxigenoterapia/métodos
13.
Biofactors ; 45(5): 641-650, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31185139

RESUMO

Epigenetic regulation is attracting much attention because it explains many of the effects that the external environment induces in organisms. Changes in the cellular redox status and even more specifically in its nuclear redox compartment is one of these examples. Redox changes can induce modulation of the epigenetic regulation in cells. Here we present a few cases where reactive oxygen or nitrogen species induces epigenetic marks in histones. Posttranslational modification of these proteins like histone nitrosylation, carbonylation, or glutathionylation together with other mechanisms not reviewed here are the cornerstones of redox-related epigenetic regulation. We currently face a new field of research with potential important consequences for the treatment of many pathologies.


Assuntos
Epigênese Genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Glutationa/metabolismo , Histonas/genética , Humanos , Camundongos , Compostos Nitrosos/metabolismo , Oxirredução , Estresse Oxidativo , Carbonilação Proteica , Transdução de Sinais , Compostos de Enxofre/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3234-3246, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006152

RESUMO

Circulating histones have been proposed as targets for therapy in sepsis and hyperinflammatory symptoms. However, the proposed strategies have failed in clinical trials. Although different mechanisms for histone-related cytotoxicity are being explored, those mediated by circulating histones are not fully understood. Extracellular histones induce endothelial cell death, thereby contributing to the pathogenesis of complex diseases such as sepsis and septic shock. Therefore, the comprehension of cellular responses triggered by histones is capital to design effective therapeutic strategies. Here we report how extracellular histones induce autophagy and apoptosis in a dose-dependent manner in cultured human endothelial cells. In addition, we describe how histones regulate these pathways via Sestrin2/AMPK/ULK1-mTOR and AKT/mTOR. Furthermore, we evaluate the effect of Toll-like receptors in mediating autophagy and apoptosis demonstrating how TLR inhibitors do not prevent apoptosis and/or autophagy induced by histones. Our results confirm that histones and autophagic pathways can be considered as novel targets to design therapeutic strategies in endothelial damage.


Assuntos
Histonas/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
J Gen Virol ; 98(7): 1855-1863, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28691896

RESUMO

The level of antioxidants, such as thiol-containing tripeptide glutathione (GSH), in cytomegalovirus (CMV)-infected cells is notably increased. We previously showed that GSH levels in plasma, as measured by untargeted 1H nuclear magnetic resonance, are higher in allogeneic stem cell transplant (allo-SCT) recipients who subsequently develop CMV viraemia. We hypothesized that the net level of oxidative-stress markers present in plasma may be reduced in patients who develop CMV DNAaemia compared to those who do not. We serially monitored the levels of malondialdehyde (MDA) and carbonylated proteins (CPs) early after allo-SCT and assessed whether they could predict the occurrence of CMV DNAaemia. MDA levels were measured in 43 patients (28 had CMV DNAaemia) and CPs were quantified in 53 patients (38 patients developed CMV DNAaemia). The area under the curve (AUC) value for MDA, but not for CPs, was significantly lower in patients who subsequently developed CMV DNAaemia compared to those who remained DNAaemia-free (P=0.043). A trend toward lower MDA AUC values was observed in episodes of CMV DNAaemia with faster CMV replicative kinetics and in those who reached higher peak CMV DNA levels. Moreover, receiver operating characteristic curve analyses indicated that the MDA biomarker had the predictive ability to discriminate between patients with or without subsequent CMV DNAaemia (AUC=0.69, 95 % confidence interval 0.51-0.85, P=0.05). In summary, serial quantitation of MDA may be useful for individualizing antiviral prophylaxis therapies (targeted prophylaxis) in the upcoming era of new antiviral drugs with improved safety profiles.


Assuntos
Citomegalovirus/genética , DNA Viral/sangue , Glutationa/sangue , Malondialdeído/sangue , Carbonilação Proteica/fisiologia , Transplante de Células-Tronco/efeitos adversos , Carga Viral/métodos , Viremia/diagnóstico , Adulto , Idoso , Antioxidantes/metabolismo , Infecções por Citomegalovirus/sangue , Infecções por Citomegalovirus/virologia , Feminino , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Curva ROC , Viremia/virologia
16.
Free Radic Biol Med ; 112: 36-48, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28705657

RESUMO

Epigenetics is a rapidly growing field that studies gene expression modifications not involving changes in the DNA sequence. Histone H3, one of the basic proteins in the nucleosomes that make up chromatin, is S-glutathionylated in mammalian cells and tissues, making Gamma-L-glutamyl-L-cysteinylglycine, glutathione (GSH), a physiological antioxidant and second messenger in cells, a new post-translational modifier of the histone code that alters the structure of the nucleosome. However, the role of GSH in the epigenetic mechanisms likely goes beyond a mere structural function. Evidence supports the hypothesis that there is a link between GSH metabolism and the control of epigenetic mechanisms at different levels (i.e., substrate availability, enzymatic activity for DNA methylation, changes in the expression of microRNAs, and participation in the histone code). However, little is known about the molecular pathways by which GSH can control epigenetic events. Studying mutations in enzymes involved in GSH metabolism and the alterations of the levels of cofactors affecting epigenetic mechanisms appears challenging. However, the number of diseases induced by aberrant epigenetic regulation is growing, so elucidating the intricate network between GSH metabolism, oxidative stress and epigenetics could shed light on how their deregulation contributes to the development of neurodegeneration, cancer, metabolic pathologies and many other types of diseases.


Assuntos
Epigênese Genética , Glutationa/metabolismo , Síndrome Metabólica/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Processamento de Proteína Pós-Traducional , Animais , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Nucleossomos/química , Nucleossomos/metabolismo , S-Adenosilmetionina/metabolismo
17.
Pediatr Blood Cancer ; 62(7): 1137-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25732180

RESUMO

The commonly accepted definition of Fanconi anemia (FA) relying on DNA repair deficiency is submitted to a critical review starting from the early reports pointing to mitomycin C bioactivation and to the toxicity mechanisms of diepoxybutane and a group of nitrogen mustards causing DNA crosslinks in FA cells. A critical analysis of the literature prompts revisiting the FA phenotype and crosslinker sensitivity in terms of an oxidative stress (OS) background, redox-related anomalies of FA (FANC) proteins, and mitochondrial dysfunction. This re-appraisal of FA basic defect might lead to innovative approaches both in elucidating FA phenotypes and in clinical management.


Assuntos
Instabilidade Cromossômica , Reagentes de Ligações Cruzadas , Dano ao DNA/genética , Reparo do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Animais , Regulação da Expressão Gênica , Humanos , Estresse Oxidativo
18.
Orphanet J Rare Dis ; 9: 211, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25528446

RESUMO

BACKGROUND: Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. METHODS: Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy. RESULTS: Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. CONCLUSIONS: This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS.


Assuntos
Vesícula/diagnóstico , Vesícula/metabolismo , Epidermólise Bolhosa/diagnóstico , Epidermólise Bolhosa/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/fisiologia , Doenças Periodontais/diagnóstico , Doenças Periodontais/metabolismo , Transtornos de Fotossensibilidade/diagnóstico , Transtornos de Fotossensibilidade/metabolismo , Adolescente , Idoso de 80 Anos ou mais , Vesícula/fisiopatologia , Células Cultivadas , Criança , Pré-Escolar , Epidermólise Bolhosa/fisiopatologia , Feminino , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Doenças Periodontais/fisiopatologia , Transtornos de Fotossensibilidade/fisiopatologia
19.
Int J Mol Sci ; 15(11): 20169-208, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25380523

RESUMO

An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with "classical" antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.


Assuntos
Quimioprevenção , Ensaios Clínicos como Assunto , Coenzimas/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Estresse Oxidativo , Animais , Humanos
20.
PLoS One ; 9(7): e101424, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987982

RESUMO

The predominant X-linked form of Dyskeratosis congenita results from mutations in DKC1, which encodes dyskerin, a protein required for ribosomal RNA modification that is also a component of the telomerase complex. We have previously found that expression of an internal fragment of dyskerin (GSE24.2) rescues telomerase activity in X-linked dyskeratosis congenita (X-DC) patient cells. Here we have found that an increased basal and induced DNA damage response occurred in X-DC cells in comparison with normal cells. DNA damage that is also localized in telomeres results in increased heterochromatin formation and senescence. Expression of a cDNA coding for GSE24.2 rescues both global and telomeric DNA damage. Furthermore, transfection of bacterial purified or a chemically synthesized GSE24.2 peptide is able to rescue basal DNA damage in X-DC cells. We have also observed an increase in oxidative stress in X-DC cells and expression of GSE24.2 was able to diminish it. Altogether our data indicated that supplying GSE24.2, either from a cDNA vector or as a peptide reduces the pathogenic effects of Dkc1 mutations and suggests a novel therapeutic approach.


Assuntos
Proteínas de Ciclo Celular/genética , Dano ao DNA , Disceratose Congênita/genética , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Estresse Oxidativo , Animais , Linhagem Celular , Disceratose Congênita/metabolismo , Disceratose Congênita/patologia , Disceratose Congênita/terapia , Terapia Genética , Heterocromatina/genética , Heterocromatina/patologia , Humanos , Camundongos , Peptídeos/genética , Peptídeos/uso terapêutico , Telômero/genética , Telômero/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA