Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 339: 199264, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37944757

RESUMO

Reverse genetics systems represent an important tool for studying the molecular and functional processes of viral infection. Citrus leprosis virus C (CiLV-C) (genus Cilevirus, family Kitaviridae) is the main pathogen responsible for the citrus leprosis (CL) disease in Latin America, one of the most economically important diseases of the citrus industry. Molecular studies of this pathosystem are limited due to the lack of infectious clones. Here, we report the construction and validation of a CiLV-C infectious cDNA clone based on an agroinfection system. The two viral RNA segments (RNA1 and RNA2) were assembled into two binary vectors (pJL89 and pLXAS). Agroinfiltrated Nicotiana benthamiana plants showed a response similar to that observed in the natural infection process with the formation of localized lesions restricted to the inoculated leaves. The virus recovered from the plant tissue infected with the infectious clones can be mechanically transmitted between N. benthamiana plants. Detection of CiLV-C subgenomic RNAs (sgRNAs) from agroinfiltrated and mechanically inoculated leaves further confirmed the infectivity of the clones. Finally, partial particle-purification preparations or sections of CiLV-C-infected tissue followed by transmission electron microscopy (TEM) analysis showed the formation of CiLV-C virions rescued by the infectious clone. The CiLV-C reverse genetic system now provides a powerful molecular tool to unravel the peculiarities of the CL pathosystem.


Assuntos
Citrus , Vírus de RNA , DNA Complementar/genética , RNA Subgenômico , RNA Viral/genética , Citrus/genética , Doenças das Plantas
2.
J Virol ; 97(10): e0112423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792002

RESUMO

IMPORTANCE: Many plant proteins and some proteins from plant pathogens are dually targeted to chloroplasts and mitochondria, and are supposed to be transported along the general pathways for organellar protein import, but this issue has not been explored yet. Moreover, organellar translocon receptors exist as families of several members whose functional specialization in different cargos is supposed but not thoroughly studied. This article provides novel insights into such topics showing for the first time that an exogenous protein, the melon necrotic spot virus coat protein, exploits the common Toc/Tom import systems to enter both mitochondria and chloroplasts while identifying the involved specific receptors.


Assuntos
Arabidopsis , Proteínas do Capsídeo , Cloroplastos , Mitocôndrias , Nicotiana , Proteínas de Plantas , Receptores de Superfície Celular , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas do Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Cloroplastos/metabolismo , Cloroplastos/virologia , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Transporte Proteico , Receptores de Superfície Celular/metabolismo
3.
Plant Dis ; 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344942

RESUMO

Agave attenuata is a Mexican wild plant originally from highlands in the central and occidental mountains of Mexico. This species, known as "swan´s neck agave", is used only as an ornamental plant in public and private gardens. No virus had previously been reported from A. attenuata before this study. In a survey conducted in a commercial greenhouse in Cuautla, Morelos, in 2018, several plants were observed with symptoms of green mosaic and streaks, consistent with a putative viral infection. Sap inoculation from symptomatic A. attenuata plants to herbaceous indicator plants (Nicotiana benthamiana and N. tabacum) failed to produce symptoms in the mechanically inoculated plants. ELISA specific test to CMV, TEV, AMV, TMV and Potyvirus Group (Agdia, Inc.), was positive only for the last one (Chen and Chang, 1998). To determine the identity of the potyvirus involved, total nucleic acid extracts from 100 mg of symptomatic leaves (Trizol reagent; Gibco BRL Life Technologies, England) were used as template in RT-PCR with genus-specific potyvirus primers POT1-POT2, which targeted the variable 5´ terminal half of the coat protein gene of potyviruses (Colinet et al. 1998). The expected 900 bp amplicon was consistently detected in 10 symptomatic A. attenuata plants whereas no PCR products were obtained from 15 asymptomatic A. attenuata plants collected from the "Agaves de México" section at the 'Botanic Garden' of the Instituto de Biología de la UNAM, México. The amplicons were sequenced by the Sanger´s method and the obtained nucleotide (nt) sequences (Acc. No KY190217.1; OP964597-598) and their derived amino acid (aa) sequences were 94.68% to 95.80% similar to an isolate of Tuberose mild mosaic virus (TuMMV; Potyvirus; (Acc. No ON116187.1) characterized from Agave amica in India (Raj et al. 2009). Interestingly, A. amica (formerly Poliantes tuberose) is also a wild Mexican plant that is geographically distributed in the central and south regions of Mexico and is currently being commercially cultivated as an ornamental plant. Plants of A. amica (n=10) showing yellow mild streak were collected from commercial greenhouse and tested positive for TuMMV by RT-PCR and Sanger sequencing (No Acc. OP964599-601 levels) described above. The derived TuMMV sequences from A. attenuata and A. amica were 99-100% similar to each other at the nt/aa level. To exclude the involvement of additional viral agents in the disease, high-throughput sequencing analysis was performed separately for each species of Agave on total RNA extracts from a composite sample of symptomatic leaf tissues using Illumina´s Next Seq 500 platform. Analysis of the obtained 13,260,700 reads (each 75 nt) by the Trinity software, with a total number of sequences of 22,793, resulted in the identification of a single viral contig of 9500 nt for A. attenuata (Acc. No OP964595). Similarly, for A. amica, 27,262,248 reads were obtained, with a total number of sequences of 23,269, resulting in the identification of a single viral contig of 8500 nt (ACC. No OP964602). These contigs showed an identity percentage of 96%/88% and 98%/96% for nucleotides and amino acids, respectively, compared to an isolate of TuMMV from India (Acc. OM293939). Mexico is a center of origin for numerous species of genus Agave which have high economic, social, and ecological impact. TuMMV could be a threat to these plants and potentially to other unknown susceptible crops. To our knowledge, this is the first report of TuMMV in A. attenuata and A. amica in Mexico. REFERENCE Chen, C. C., and Chang, C. A. 1998. Characterization of a potyvirus causing mild mosaic on tuberose. Plant Dis. 82:45-49. Colinet, D., Nguyen, M., Kummert, J., Lepoivre, P., and Xia, F. Z. 1998. Differentiation among potyviruses infecting sweet potato based on genus- and virus-specific reverse transcription polymerase chain reaction. Plant Dis. 82:223-229. Raj, S.K., Snehi, S.K., Kumar, S., Ram, T. and Goel, A.K. 2009. First report of Tuberose mild mosaic potyvirus from tuberose (Polianthes tuberosa L.) in India. Australasian Plant Dis. Notes 4, 93-95.

4.
Front Plant Sci ; 13: 1040688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388587

RESUMO

Improved bioinformatics tools for annotating gene function are becoming increasingly available, but such information must be considered theoretical until further experimental evidence proves it. In the work reported here, the genes for the main components of the translocons of the outer membrane of chloroplasts (Toc) and mitochondria (Tom), including preprotein receptors and protein-conducting channels of N. benthamiana, were identified. Sequence identity searches and phylogenetic relationships with functionally annotated sequences such as those of A. thaliana revealed that N. benthamiana orthologs mainly exist as recently duplicated loci. Only a Toc34 ortholog was found (NbToc34), while Toc159 receptor family was composed of four orthologs but somewhat different from those of A. thaliana. Except for NbToc90, the rest (NbToc120, NbToc159A and NbToc159B) had a molecular weight of about 150 kDa and an acidic domain similar in length. Only two orthologs of the Tom20 receptors, NbTom20-1 and NbTom20-2, were found. The number of the Toc and Tom receptor isoforms in N. benthamiana was comparable to that previously reported in tomato and what we found in BLAST searches in other species in the genera Nicotiana and Solanum. After cloning, the subcellular localization of N. benthamiana orthologs was studied, resulting to be identical to that of A. thaliana receptors. Phenotype analysis after silencing together with relative expression analysis in roots, stems and leaves revealed that, except for the Toc and Tom channel-forming components (NbToc75 and NbTom40) and NbToc34, functional redundancy could be observed either among Toc159 or mitochondrial receptors. Finally, heterodimer formation between NbToc34 and the NbToc159 family receptors was confirmed by two alternative techniques indicating that different Toc complexes could be assembled. Additional work needs to be addressed to know if this results in a functional specialization of each Toc complex.

5.
J Gen Virol ; 103(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399122

RESUMO

To counteract RNA interference-mediated antiviral defence, virus genomes evolved to express proteins that inhibit this plant defence mechanism. Using six independent biological approaches, we show that orchid fleck dichorhavirus citrus strain (OFV-citrus) movement protein (MP) may act as a viral suppressor of RNA silencing (VSR). By using the alfalfa mosaic virus (AMV) RNA 3 expression vector, it was observed that the MP triggered necrosis response in transgenic tobacco leaves and increased the viral RNA (vRNA) accumulation. The use of the potato virus X (PVX) expression system revealed that the cis expression of MP increased both the severity of the PVX infection and the accumulation of PVX RNAs, further supporting that MP could act as an RNA silencing suppressor (RSS). From the analysis of the RSS-defective turnip crinkle virus (TCV), we do not find local RSS activity for MP, suggesting a link between MP suppressor activity and the prevention of systemic silencing. In the analysis of local suppressive activity using the GFP-based agroinfiltration assay in Nicotiana benthamiana (16 c line), we do not identify local RSS activity for the five OFV RNA1-encoded proteins. However, when evaluating the small interfering RNA (siRNA) accumulation, we find that the expression of MP significantly reduces the accumulation of GFP-derived siRNA. Finally, we examine whether the MP can prevent systemic silencing in 16c plants. Our findings show that MP inhibits the long-distance spread of RNA silencing, but does not affect the short-distance spread. Together, our findings indicate that MP is part of OFV's counter-defence mechanism, acting mainly in the prevention of systemic long-distance silencing. This work presents the first report of a VSR for a member of the genus Dichorhavirus.


Assuntos
Doenças das Plantas , Rhabdoviridae , Interferência de RNA , RNA Interferente Pequeno , RNA de Cadeia Dupla
6.
Viruses ; 14(8)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36016339

RESUMO

We have previously reported the presence of m6A in the AMV (Alfamovirus, Bromoviridae) genome. Interestingly, two of these putative m6A-sites are in hairpin (hp) structures in the 3'UTR of the viral RNA3. One site (2012AAACU2016) is in the loop of hpB, within the coat protein binding site 1 (CPB1), while the other (1900UGACC1904) is in the lower stem of hpE, a loop previously associated with AMV negative-strand RNA synthesis. In this work, we have performed in vivo experiments to assess the role of these two regions, containing the putative m6A-sites in the AMV cycle, by introducing compensatory point mutations to interfere with or abolish the m6A-tag of these sites. Our results suggest that the loop of hpB could be involved in viral replication/accumulation. Meanwhile, in the 1900UGACC1904 motif of the hpE, the maintenance of the adenosine residue and the lower stem hpE structure are necessary for in vivo plus-strand accumulation. These results extend our understanding of the requirements for hpE in the AMV infection cycle, indicating that both the residue identity and the base-pairing capacity in this structure are essential for viral accumulation.


Assuntos
Vírus do Mosaico da Alfafa , Viroses , Regiões 3' não Traduzidas , Vírus do Mosaico da Alfafa/genética , Vírus do Mosaico da Alfafa/metabolismo , Sequência de Bases , Humanos , RNA Viral/metabolismo , Viroses/genética
7.
Viruses ; 13(12)2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960766

RESUMO

Previous results using a movement defective alfalfa mosaic virus (AMV) vector revealed that citrus leprosis virus C (CiLV-C) movement protein (MP) generates a more efficient local movement, but not more systemic transport, than citrus leprosis virus C2 (CiLV-C2) MP, MPs belonging to two important viruses for the citrus industry. Here, competition experiment assays in transgenic tobacco plants (P12) between transcripts of AMV constructs expressing the cilevirus MPs, followed by several biological passages, showed the prevalence of the AMV construct carrying the CiLV-C2 MP. The analysis of AMV RNA 3 progeny recovered from P12 plant at the second viral passage revealed the presence of a mix of progeny encompassing the CiLV-C2 MP wild type (MPWT) and two variants carrying serines instead phenylalanines at positions 72 (MPS72F) or 259 (MPS259F), respectively. We evaluated the effects of each modified residue in virus replication, and cell-to-cell and long-distance movements. Results indicated that phenylalanine at position 259 favors viral cell-to-cell transport with an improvement in viral fitness, but has no effect on viral replication, whereas mutation at position 72 (MPS72F) has a penalty in the viral fitness. Our findings indicate that the prevalence of a viral population may be correlated with its greater efficiency in cell-to-cell and systemic movements.


Assuntos
Citrus/virologia , Mutação , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/fisiologia , Vírus do Mosaico da Alfafa/genética , Movimento , Plantas Geneticamente Modificadas , Replicação Viral
8.
Plant J ; 108(1): 197-218, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309112

RESUMO

Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS). We also show that CP organelle import inhibition enhanced RSS activity, CP accumulation and VRC biogenesis but resulted in inhibition of systemic spreading, indicating that MNSV whole-plant infection requires CP organelle import. We hypothesize that to alleviate the p29 impact on host physiology, MNSV could moderate its replication and p29 accumulation by regulating CP RSS activity through organelle targeting and, consequently, eluding early-triggered antiviral response. Cellular and molecular events also suggested that S/P domains, which correspond to processed CP in chloroplast stroma or mitochondrion matrix, could mitigate host response inhibiting p29-induced necrosis. S/P deletion mainly resulted in a precarious balance between defense and counter-defense responses, generating either cytopathic alterations and MNSV cell-to-cell movement restriction or some degree of local movement. In addition, local necrosis and defense responses were dampened when RSS activity but not S/P organelle targeting was affected. Based on a robust biochemical and cellular analysis, we established that the mitochondrial and chloroplast dual targeting of MNSV CP profoundly impacts the viral infection cycle.


Assuntos
Proteínas do Capsídeo/metabolismo , Cucurbitaceae/virologia , Doenças das Plantas/virologia , Tombusviridae/fisiologia , Proteínas do Capsídeo/genética , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/fisiologia , Genes Reporter , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mutação , Estresse Oxidativo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Transporte Proteico , Interferência de RNA , Nicotiana/genética , Nicotiana/fisiologia , Tombusviridae/genética , Tombusviridae/patogenicidade , Tropismo Viral , Replicação Viral
9.
Mol Plant Pathol ; 22(2): 153-162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33305492

RESUMO

TAXONOMY: Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling-circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid. PHYSICAL PROPERTIES: Hop stunt viroid consists of a single-stranded, circular RNA of 295-303 nucleotides depending on isolates and sequence variants. The most stable secondary structure is a rod-like or quasi-rod-like conformation with two characteristic domains: a CCR and a terminal conserved hairpin similar to that of cocadviroids. HSVd lacks a terminal conserved region. HOSTS AND SYMPTOMS: HSVd infects a very broad range of natural hosts and has been reported to be the causal agent of five different diseases (citrus cachexia, cucumber pale fruit, peach and plum apple apricot distortion, and hop stunt). It is distributed worldwide. TRANSMISSION: HSVd is transmitted mechanically and by seed.


Assuntos
Vírus de Plantas/patogenicidade , RNA Viral/fisiologia , Viroides/patogenicidade , Epigênese Genética , Variação Genética , Genoma Viral , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Vírus de Plantas/genética , Viroides/genética , Replicação Viral
10.
Front Microbiol ; 11: 1231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655520

RESUMO

Citrus leprosis virus C (CiLV-C) belongs to the genus Cilevirus, family Kitaviridae, and is considered the most devastating virus infecting citrus in Brazil, being the main viral pathogen responsible for citrus leprosis (CL), a severe disease that affects citrus orchards in Latin America. Here, proteins encoded by CiLV-C genomic RNA 1 and 2 were screened for potential RNA silencing suppressor (RSS) activity by five methods. Using the GFP-based reporter agroinfiltration assay, we have not found potential local suppressor activity for the five CiLV-C encoded proteins. However, when RSS activity was evaluated using the alfalfa mosaic virus (AMV) system, we found that the p29, p15, and p61 CiLV-C proteins triggered necrosis response and increased the AMV RNA 3 accumulation, suggesting a suppressive functionality. From the analysis of small interfering RNAs (siRNAs) accumulation, we observed that the ectopic expression of the p29, p15, and p61 reduced significantly the accumulation of GFP derived siRNAs. The use of the RSS defective turnip crinkle virus (TCV) system revealed that only the trans-expression of the p15 protein restored the cell-to-cell viral movement. Finally, the potato virus X (PVX) system revealed that the expression of p29, p15, and p61 increased the PVX RNA accumulation; in addition, the p29 and p15 enhanced the pathogenicity of PVX resulting in the death of tobacco plants. Furthermore, PVX-p61 infection resulted in a hypersensitive response (HR), suggesting that p61 could also activate a plant defense response mechanism. This is the first report describing the RSS activity for CiLV-C proteins and, moreover, for a member of the family Kitaviridae.

11.
Virus Res ; 272: 197733, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31461660

RESUMO

Plant viruses express RNA silencing suppressor (RSS) proteins to counteract plant defence mechanisms. Here, we describe a method to assess the RSS activity based on an alfalfa mosaic virus (AMV) RNA 3 expression vector and transgenic Nicotiana tabacum plants that express the P1 and P2 subunits of the AMV replicase (P12 plants). Inoculation of P12 plants with different AMV RNA 3 constructs expressing different HC-Pro mutants that differ in their RSS capabilities, revealed a perfect correlation between necrotic lesions on inoculated leaves and RSS activity. Protoplast analysis showed that the RSS activity correlated with the accumulation of the AMV RNAs. A direct comparison between three RSS activity assays and the AMV-P12 system revealed that the coat protein of carnation mottle virus displays RSS activity with the four assays and reduced the accumulation of the siRNAs.


Assuntos
Vírus do Mosaico da Alfafa/genética , Expressão Gênica , Inativação Gênica , Vetores Genéticos/genética , Interferência de RNA , Ordem dos Genes , Fenótipo , Doenças das Plantas/virologia , Vírus de Plantas/genética , RNA Viral , Sensibilidade e Especificidade
12.
Front Microbiol ; 9: 2087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250456

RESUMO

Plant viruses are still one of the main contributors to economic losses in agriculture. It has been estimated that plant viruses can cause as much as 50 billion euros loss worldwide, per year. This situation may be worsened by recent climate change events and the associated changes in disease epidemiology. Reliable and early detection methods are still one of the main and most effective actions to develop control strategies for plant viral diseases. During the last years, considerable progress has been made to develop tools with high specificity and low detection limits for use in the detection of these plant pathogens. Time and cost reductions have been some of the main objectives pursued during the last few years as these increase their feasibility for routine use. Among other strategies, these objectives can be achieved by the simultaneous detection and (or) identification of several viruses in a single assay. Nucleic acid-based detection techniques are especially suitable for this purpose. Polyvalent detection has allowed the detection of multiple plant viruses at the genus level. Multiplexing RT polymerase chain reaction (PCR) has been optimized for the simultaneous detection of more than 10 plant viruses/viroids. In this short review, we provide an update on the progress made during the last decade on techniques such as multiplex PCR, polyvalent PCR, non-isotopic molecular hybridization techniques, real-time PCR, and array technologies to allow simultaneous detection of multiple plant viruses. Also, the potential and benefits of the powerful new technique of deep sequencing/next-generation sequencing are described.

13.
Phytopathology ; 108(12): 1522-1529, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29894281

RESUMO

The use of a unique riboprobe named polyprobe, carrying partial sequences of different plant viruses or viroids fused in tandem, has permitted the polyvalent detection of up to 10 different pathogens by using a nonradioactive molecular hybridization procedure. In the present analysis, we have developed a unique polyprobe with the capacity to detect all members of the genus Potyvirus, which we have named genus-probe. To do this, we have exploited the capacity of the molecular hybridization assay to cross-hybridize with related sequences by reducing the hybridization temperature. We observed that sequences showing a percentage similarity of 68% or higher could be detected with the same probe by hybridizing at 50 to 55°C, with a detection limit of picograms of viral RNA comparable to the specific individual probes. According to this, we developed several polyvalent polyprobes, containing three, five, or seven different 500-nucleotide fragments of a conserved region of the NIb gene. The polyprobe carrying seven different conserved regions was able to detect all the 32 potyviruses assayed in the present work with no signal in the healthy tissue, indicating the potential capacity of the polyprobe to detect all described, and probably uncharacterized, potyviruses being then considered as a genus-probe. The use of this technology in routine diagnosis not only for Potyvirus but also to other viral genera is discussed.


Assuntos
Sondas de DNA/genética , Hibridização de Ácido Nucleico/métodos , Doenças das Plantas/virologia , Potyvirus/isolamento & purificação , Sequência Conservada , Potyvirus/genética , RNA Viral/genética , Viroides/genética , Viroides/isolamento & purificação
14.
Proc Natl Acad Sci U S A ; 114(40): 10755-10760, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923956

RESUMO

N6-methyladenosine (m6A) is an internal, reversible nucleotide modification that constitutes an important regulatory mechanism in RNA biology. Unlike mammals and yeast, no component of the m6A cellular machinery has been described in plants at present. m6A has been identified in the genomic RNAs of diverse mammalian viruses and, additionally, viral infection was found to be modulated by the abundance of m6A in viral RNAs. Here we show that the Arabidopsis thaliana protein atALKBH9B (At2g17970) is a demethylase that removes m6A from single-stranded RNA molecules in vitro. atALKBH9B accumulates in cytoplasmic granules, which colocalize with siRNA bodies and associate with P bodies, suggesting that atALKBH9B m6A demethylase activity could be linked to mRNA silencing and/or mRNA decay processes. Moreover, we identified the presence of m6A in the genomes of two members of the Bromoviridae family, alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). The demethylation activity of atALKBH9B affected the infectivity of AMV but not of CMV, correlating with the ability of atALKBH9B to interact (or not) with their coat proteins. Suppression of atALKBH9B increased the relative abundance of m6A in the AMV genome, impairing the systemic invasion of the plant, while not having any effect on CMV infection. Our findings suggest that, as recently found in animal viruses, m6A modification may represent a plant regulatory strategy to control cytoplasmic-replicating RNA viruses.


Assuntos
Adenosina/análogos & derivados , Vírus do Mosaico da Alfafa/patogenicidade , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Genoma Viral , RNA Viral/genética , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genômica/métodos , RNA Viral/metabolismo
15.
Virus Res ; 240: 25-34, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754561

RESUMO

The cell-to-cell movement protein (NSM) of tomato spotted wilt virus (TSWV) has been recently identified as the effector of the single dominant Sw-5b resistance gene from tomato (Solanum lycopersicum L.). Although most TSWV isolates shows a resistance-inducing (RI) phenotype, regular reports have appeared on the emergence of resistance-breaking (RB) isolates in tomato fields, and suggested a strong association with two point mutations (C118Y and T120N) in the NSM protein. In this study the Sw-5b gene has been demonstrated to confer not only resistance against TSWV but to members of five additional, phylogenetically-related classified within the so-called "American" evolutionary clade, i.e., Alstroemeria necrotic streak virus (ANSV), chrysanthemum stem necrosis virus (CSNV), groundnut ringspot virus (GRSV), Impatiens necrotic spot virus (INSV) and tomato chlorotic spot virus (TCSV). Remarkably, bean necrotic mosaic virus (BeNMV), a recently discovered tospovirus classified in a distinct American subclade and circulating on the American continent, did not trigger a Sw-5b-mediated hypersensitive (HR) response. Introduction of point mutations C118Y and T120N into the NSM protein of TSWV, TCSV and CSNV abrogated the ability to trigger Sw-5b-mediated HR in both transgenic-N. benthamiana and tomato isolines harboring the Sw-5b gene whereas it had no effect on BeNMV NSM. Truncated versions of TSWV NSM lacking motifs associated with tubule formation, cell-to-cell or systemic viral movement were made and tested for triggering of resistance. HR was still observed with truncated NSM proteins lacking 50 amino acids (out of 301) from either the amino- or carboxy-terminal end. These data altogether indicate the importance of amino acid residues C118 and T120 in Sw-5b-mediated HR only for the NSM proteins from one cluster of tospoviruses within the American clade, and that the ability to support viral cell-to-cell movement is not required for effector functionality.


Assuntos
Doenças das Plantas/virologia , Proteínas de Plantas/imunologia , Proteínas do Movimento Viral em Plantas/imunologia , Solanum lycopersicum/imunologia , Tospovirus/genética , Resistência à Doença , Interações Hospedeiro-Parasita , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas do Movimento Viral em Plantas/genética , Especificidade da Espécie , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Tospovirus/imunologia , Tospovirus/isolamento & purificação , Tospovirus/fisiologia
16.
Mol Plant Pathol ; 18(2): 173-186, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26929142

RESUMO

During virus infection, specific viral component-host factor interaction elicits the transcriptional reprogramming of diverse cellular pathways. Alfalfa mosaic virus (AMV) can establish a compatible interaction in tobacco and Arabidopsis hosts. We show that the coat protein (CP) of AMV interacts directly with transcription factor (TF) ILR3 of both species. ILR3 is a basic helix-loop-helix (bHLH) family member of TFs, previously proposed to participate in diverse metabolic pathways. ILR3 has been shown to regulate NEET in Arabidopsis, a critical protein in plant development, senescence, iron metabolism and reactive oxygen species (ROS) homeostasis. We show that the AMV CP-ILR3 interaction causes a fraction of this TF to relocate from the nucleus to the nucleolus. ROS, pathogenesis-related protein 1 (PR1) mRNAs, salicylic acid (SA) and jasmonic acid (JA) contents are increased in healthy Arabidopsis loss-of-function ILR3 mutant (ilr3.2) plants, which implicates ILR3 in the regulation of plant defence responses. In AMV-infected wild-type (wt) plants, NEET expression is reduced slightly, but is induced significantly in ilr3.2 mutant plants. Furthermore, the accumulation of SA and JA is induced in Arabidopsis wt-infected plants. AMV infection in ilr3.2 plants increases JA by over 10-fold, and SA is reduced significantly, indicating an antagonist crosstalk effect. The accumulation levels of viral RNAs are decreased significantly in ilr3.2 mutants, but the virus can still systemically invade the plant. The AMV CP-ILR3 interaction may down-regulate a host factor, NEET, leading to the activation of plant hormone responses to obtain a hormonal equilibrium state, where infection remains at a level that does not affect plant viability.


Assuntos
Vírus do Mosaico da Alfafa/fisiologia , Proteínas de Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/virologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Ácido Salicílico , Transcrição Gênica , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Fluorescência , Modelos Biológicos , Mutação/genética , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Coloração e Rotulagem , Frações Subcelulares/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia
17.
New Phytol ; 211(4): 1311-22, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27174164

RESUMO

Viroids - ancient plant-pathogenic long noncoding RNAs - have developed a singular evolutionary strategy based on reprogramming specific phases of host-metabolism to ensure that their infection cycle can be completed in infected cells. However, the molecular aspects governing this transregulatory phenomenon remain elusive. Here, we use immunoprecipitation assays and bisulfite sequencing of rDNA to shown that, in infected cucumber and Nicotiana benthamina plants, Hop stunt viroid (HSVd) recruits and functionally subverts Histone Deacetylase 6 (HDA6) to promote host-epigenetic alterations that trigger the transcriptional alterations observed during viroid pathogenesis. This notion is supported by the demonstration that, during infection, the HSVd-HDA6 complex occurs in vivo and that endogenous HDA6 expression is increased in HSVd-infected cells. Moreover, transient overexpression of recombinant HDA6 reverts the hypomethylation status of rDNA observed in HSVd-infected plants and reduces viroid accumulation. We hypothesize that the host-transcriptional alterations induced as a consequence of viroid-mediated HDA6 recruitment favor spurious recognition of HSVd-RNA as an RNA Pol II template, thereby improving viroid replication. Our results constitute the first description of a physical and functional interaction between a pathogenic RNA and a component of the host RNA silencing mechanism, providing novel evidence of the potential of these pathogenic lncRNAs to physically redesign the host-cell environment and reprogram their regulatory mechanisms.


Assuntos
Cucumis sativus/enzimologia , Cucumis sativus/virologia , Epigênese Genética , Desacetilase 6 de Histona/metabolismo , Nicotiana/enzimologia , Nicotiana/virologia , Vírus de Plantas/metabolismo , RNA Longo não Codificante/metabolismo , Cucumis sativus/genética , Metilação de DNA/genética , Proteínas Nucleares/metabolismo , RNA Ribossômico/genética , RNA Viral/metabolismo , Nicotiana/genética
18.
Virus Res ; 184: 54-61, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24583367

RESUMO

The movement protein (MP) of parietaria mottle virus (PMoV) is required for virus cell-to-cell movement. Bioinformatics analysis identified two hydrophilic non-contiguous regions (R1 and R2) rich in the basic amino acids lysine and arginine and with the predicted secondary structure of an α-helix. Different approaches were used to determine the implication of the R1 and R2 regions in RNA binding, plasmodesmata (PD) targeting and cell-to-cell movement. EMSA (Electrophoretic Mobility Shift Assay) showed that both regions have RNA-binding activity whereas that mutational analysis reported that either deletion of any of these regions, or loss of the basic amino acids, interfered with the viral intercellular movement. Subcellular localization studies showed that PMoV MP locates at PD. Mutants designed to impeded cell-to-cell movement failed to accumulate at PD indicating that basic residues in both R1 and R2 are critical for binding the MP at PD.


Assuntos
Ilarvirus/fisiologia , Proteínas do Movimento Viral em Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Internalização do Vírus , Liberação de Vírus , Arginina/química , Arginina/genética , Biologia Computacional , Análise Mutacional de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Lisina/química , Lisina/genética , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Deleção de Sequência , Eletricidade Estática , Nicotiana/virologia
19.
J Virol ; 88(5): 3016-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371064

RESUMO

UNLABELLED: Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE: To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport and for predicting interactions with host factors that mediate resistance to plant viruses.


Assuntos
Membrana Celular/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Expressão Gênica , Genes Reporter , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Células Vegetais/metabolismo , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/genética , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Adv Virus Res ; 87: 139-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23809923

RESUMO

Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.


Assuntos
Genoma Viral , Interações Hospedeiro-Patógeno/imunologia , Ilarvirus , RNA Viral/genética , Sequência de Aminoácidos , Variação Genética , Ilarvirus/classificação , Ilarvirus/genética , Ilarvirus/metabolismo , Plantas/virologia , Proteínas de Ligação a RNA , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Vírion/metabolismo , Vírion/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA