Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(17): 3706-3725.e29, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37562402

RESUMO

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.


Assuntos
Medula Óssea , Doenças do Sistema Nervoso , Crânio , Animais , Humanos , Camundongos , Medula Óssea/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Crânio/citologia , Crânio/diagnóstico por imagem
2.
EBioMedicine ; 89: 104456, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36745974

RESUMO

A major evolution from purely clinical diagnoses to biomarker supported clinical diagnosing has been occurring over the past years in neurology. High-throughput methods, such as next-generation sequencing and mass spectrometry-based proteomics along with improved neuroimaging methods, are accelerating this development. This calls for a consensus framework that is broadly applicable and provides a spot-on overview of the clinical validity of novel biomarkers. We propose a harmonized terminology and a uniform concept that stratifies biomarkers according to clinical context of use and evidence levels, adapted from existing frameworks in oncology with a strong focus on (epi)genetic markers and treatment context. We demonstrate that this framework allows for a consistent assessment of clinical validity across disease entities and that sufficient evidence for many clinical applications of protein biomarkers is lacking. Our framework may help to identify promising biomarker candidates and classify their applications by clinical context, aiming for routine clinical use of (protein) biomarkers in neurology.


Assuntos
Doenças do Sistema Nervoso , Humanos , Biomarcadores , Proteômica/métodos , Espectrometria de Massas , Neuroimagem
3.
Eur J Neurol ; 30(3): 785-787, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36636924

RESUMO

Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu latu. Neuroborreliosis is reported in approximately 10% of patients with Lyme disease. We report a patient with central nervous system (CNS) large vessel vasculitis, ischemic stroke, and tumefactive contrast-enhancing brain lesions, an unusual complication of neuroborreliosis. A 56-year-old man presented with headache and disorientation for 1 month. Magnetic resonance imaging revealed basal meningitis with rapidly progressing frontotemporoinsular edema and (peri)vasculitis. Transcranial ultrasound confirmed stenosed medial cerebral arteries. [18 F]GE-180 microglia positron emission tomography (PET) showed frontotemporoinsular signal more pronounced on the right. [18 F]FET amino acid PET demonstrated low tracer uptake, suggesting an inflammatory process. Cerebrospinal fluid (CSF) showed lymphomonocytosis (243/µl), intrathecal anti-Borrelia IgM (CSF/serum index = 15.65, normal < 1.5) and anti-Borrelia IgG (CSF/serum index = 6.5, normal < 1.5), and elevated CXCL13 (29.2 pg/ml, normal < 10 pg/ml). Main differential diagnoses of neurotuberculosis and perivascular CNS lymphoma were ruled out by biopsy and Quantiferon enzyme-linked immunosorbent assay. Ceftriaxone (28 days), cortisone, and nimodipine (3 months) led to full recovery. Neuroborreliosis is an important differential diagnosis in patients with CNS large vessel vasculitis and tumefactive contrast-enhancing brain lesions, mimicking perivascular CNS lymphoma or neurotuberculosis as main neuroradiological differential diagnoses. Vasculopathy and cerebrovascular events are rare in neuroborreliosis but should be considered, especially in endemic areas.


Assuntos
Borrelia , Neuroborreliose de Lyme , Linfoma , Doenças do Sistema Nervoso , Vasculite , Masculino , Humanos , Pessoa de Meia-Idade , Neuroborreliose de Lyme/complicações , Neuroborreliose de Lyme/diagnóstico , Neuroborreliose de Lyme/líquido cefalorraquidiano , Artéria Cerebral Média , Vasculite/complicações , Linfoma/complicações
5.
Sci Transl Med ; 13(615): eabe5640, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644146

RESUMO

2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) is widely used to study cerebral glucose metabolism. Here, we investigated whether the FDG-PET signal is directly influenced by microglial glucose uptake in mouse models and patients with neurodegenerative diseases. Using a recently developed approach for cell sorting after FDG injection, we found that, at cellular resolution, microglia displayed higher glucose uptake than neurons and astrocytes. Alterations in microglial glucose uptake were responsible for both the FDG-PET signal decrease in Trem2-deficient mice and the FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial activation states determine the differential FDG uptake. Consistently, 12 patients with Alzheimer's disease and 21 patients with four-repeat tauopathies also exhibited a positive association between glucose uptake and microglial activity as determined by 18F-GE-180 18-kDa translocator protein PET (TSPO-PET) in preserved brain regions, indicating that the cerebral glucose uptake in humans is also strongly influenced by microglial activity. Our findings suggest that microglia activation states are responsible for FDG-PET signal alterations in patients with neurodegenerative diseases and mouse models for amyloidosis. Microglial activation states should therefore be considered when performing FDG-PET.


Assuntos
Fluordesoxiglucose F18 , Doenças Neurodegenerativas , Humanos , Glucose , Microglia , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Camundongos
6.
Life (Basel) ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073557

RESUMO

TSPO-PET tracers are sensitive to a single-nucleotide polymorphism (rs6971-SNP), resulting in low-, medium- and high-affinity binders (LABs, MABs and HABS), but the clinical relevance of [18F]GE-180 is still unclear. We evaluated the impact of rs6971-SNP on in vivo [18F]GE-180 binding in a healthy brain and in pseudo-reference tissue in neuro-oncological and neurodegenerative diseases. Standardized uptake values (SUVs) of [18F]GE-180-PET were assessed using a manually drawn region of interest in the frontoparietal and cerebellar hemispheres. The SUVs were compared between the LABs, MABs and HABs in control, glioma, four-repeat tauopathy (4RT) and Alzheimer's disease (AD) subjects. Second, the SUVs were compared between the patients and controls within their rs6971-subgroups. After excluding patients with prior therapy, 24 LABs (7 control, 5 glioma, 6 4RT and 6 AD) were analyzed. Age- and sex-matched MABs (n = 38) and HABs (n = 50) were selected. The LABs had lower frontoparietal and cerebellar SUVs when compared with the MABs and HABs, but no significant difference was observed between the MABs and HABs. Within each rs6971 group, no SUV difference between the patients and controls was detected in the pseudo-reference tissues. The rs6971-SNP affects [18F]GE-180 quantification, revealing lower binding in the LABs when compared to the MABs and HABs. The frontoparietal and cerebellar ROIs were successfully validated as pseudo-reference regions.

7.
Front Aging Neurosci ; 13: 661284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054506

RESUMO

Objectives: In recent years several 18F-labeled amyloid PET (Aß-PET) tracers have been developed and have obtained clinical approval. There is evidence that Aß-PET perfusion can provide surrogate information about neuronal injury in neurodegenerative diseases when compared to conventional blood flow and glucose metabolism assessment. However, this paradigm has not yet been tested in neurodegenerative disorders with cortical and subcortical affection. Therefore, we investigated the performance of early acquisition 18F-flutemetamol Aß-PET in comparison to 18F-fluorodeoxyglucose (FDG)-PET in corticobasal syndrome (CBS). Methods: Subjects with clinically possible or probable CBS were recruited within the prospective Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease (ActiGliA) observational study and all CBS cases with an available FDG-PET prior to Aß-PET were selected. Aß-PET was acquired 0-10 min p.i. (early-phase) and 90-110 min p.i. (late-phase) whereas FDG-PET was recorded statically from 30 to 50 min p.i. Semiquantitative regional values and asymmetry indices (AI) were compared between early-phase Aß-PET and FDG-PET. Visual assessments of hypoperfusion and hypometabolism were compared between both methods. Late-phase Aß-PET was evaluated visually for assessment of Aß-positivity. Results: Among 20 evaluated patients with CBS, 5 were Aß-positive. Early-phase Aß-PET and FDG-PET SUVr correlated highly in cortical (mean R = 0.86, range 0.77-0.92) and subcortical brain regions (mean R = 0.84, range 0.79-0.90). Strong asymmetry was observed in FDG-PET for the motor cortex (mean |AI| = 2.9%), the parietal cortex (mean |AI| = 2.9%), and the thalamus (mean |AI| = 5.5%), correlating well with AI of early-phase Aß-PET (mean R = 0.87, range 0.62-0.98). Visual assessments of hypoperfusion and hypometabolism were highly congruent. Conclusion: Early-phase Aß-PET facilitates assessment of neuronal injury in CBS for cortical and subcortical areas. Known asymmetries in CBS are captured by this method, enabling assessment of Aß-status and neuronal injury with a single radiation exposure at a single visit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA