Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0280594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724150

RESUMO

Microplastics (MPs) are ubiquitous in the environment, in the human food chain, and have been recently detected in blood and lung tissues. To undertake a pilot analysis of MP contamination in human vein tissue samples with respect to their presence (if any), levels, and characteristics of any particles identified. This study analysed digested human saphenous vein tissue samples (n = 5) using µFTIR spectroscopy (size limitation of 5 µm) to detect and characterise any MPs present. In total, 20 MP particles consisting of five MP polymer types were identified within 4 of the 5 vein tissue samples with an unadjusted average of 29.28 ± 34.88 MP/g of tissue (expressed as 14.99 ± 17.18 MP/g after background subtraction adjustments). Of the MPs detected in vein samples, five polymer types were identified, of irregular shape (90%), with alkyd resin (45%), poly (vinyl propionate/acetate, PVAc (20%) and nylon-ethylene-vinyl acetate, nylon-EVA, tie layer (20%) the most abundant. While the MP levels within tissue samples were not significantly different than those identified within procedural blanks (which represent airborne contamination at time of sampling), they were comprised of different plastic polymer types. The blanks comprised n = 13 MP particles of four MP polymer types with the most abundant being polytetrafluoroethylene (PTFE), then polypropylene (PP), polyethylene terephthalate (PET) and polyfumaronitrile:styrene (FNS), with a mean ± SD of 10.4 ± 9.21, p = 0.293. This study reports the highest level of contamination control and reports unadjusted values alongside different contamination adjustment techniques. This is the first evidence of MP contamination of human vascular tissues. These results support the phenomenon of transport of MPs within human tissues, specifically blood vessels, and this characterisation of types and levels can now inform realistic conditions for laboratory exposure experiments, with the aim of determining vascular health impacts.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos/análise , Projetos Piloto , Nylons , Veia Safena , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polímeros
2.
Nutr Metab Cardiovasc Dis ; 31(5): 1349-1356, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812732

RESUMO

AIM: Coronary artery bypass graft (CABG) using autologous saphenous vein continues to be a gold standard procedure to restore the supply of oxygen-rich blood to the heart muscles in coronary artery disease (CAD) patients with or without type 2 diabetes mellitus (T2DM). However, CAD patients with T2DM are at higher risk of graft failure. While failure rates have been reduced through improvements in procedure-related factors, much less is known about the molecular and cellular mechanisms by which T2DM initiates vein graft failure. This review gives novel insights into these cellular and molecular mechanisms and identifies potential therapeutic targets for development of new medicines to improve vein graft patency. DATA SYNTHESIS: One important cellular process that has been implicated in the pathogenesis of T2DM is protein O-GlcNAcylation, a dynamic, reversible post-translational modification of serine and threonine residues on target proteins that is controlled by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Protein O-GlcNAcylation impacts a range of cellular processes, including trafficking, metabolism, inflammation and cytoskeletal organisation. Altered O-GlcNAcylation homeostasis have, therefore, been linked to a range of human pathologies with a metabolic component, including T2DM. CONCLUSION: We propose that protein O-GlcNAcylation alters vascular smooth muscle and endothelial cell function through modification of specific protein targets which contribute to the vascular re-modelling responsible for saphenous vein graft failure in T2DM.


Assuntos
Glicemia/metabolismo , Ponte de Artéria Coronária , Doença da Artéria Coronariana/cirurgia , Diabetes Mellitus Tipo 2/complicações , Oclusão de Enxerto Vascular/etiologia , Processamento de Proteína Pós-Traducional , Veia Safena/transplante , Animais , Biomarcadores/sangue , Ponte de Artéria Coronária/efeitos adversos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicosilação , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/patologia , Oclusão de Enxerto Vascular/prevenção & controle , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Medição de Risco , Fatores de Risco , Veia Safena/metabolismo , Veia Safena/patologia , Falha de Tratamento , Remodelação Vascular
3.
Pharmacol Res ; 165: 105467, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33515704

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked ß-N-acetylglucosamine transferase (OGT) and O-linked ß-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Doenças Cardiovasculares/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inibidores Enzimáticos/administração & dosagem , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Acetilglucosamina/antagonistas & inibidores , Acetilglucosamina/metabolismo , Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/metabolismo , Acilação/efeitos dos fármacos , Acilação/fisiologia , Animais , Antígenos de Neoplasias/metabolismo , Doenças Cardiovasculares/metabolismo , Glicosilação/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/metabolismo
4.
Methods Mol Biol ; 2169: 105-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548823

RESUMO

The ability of inducible regulator suppressor of cytokine signaling 3 (SOCS3) to inhibit Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling requires interaction with specific cytokine receptors, JAKs, and components of the cellular ubiquitylation machinery. However, it is now clear that additional protein interactions are essential for effective inhibition of JAK-STAT signaling that have also identified new roles for SOCS3. For example, we have demonstrated that SOCS3 interaction with cavin-1, a core component of caveolae essential for their formation, is required for effective inhibition of interleukin (IL)-6 signaling and maintenance of cellular levels of caveolae. This is achieved through cavin-1 interaction with a discrete motif within the SOCS3 SH2 domain. Here, we describe in detail three methods (coimmunoprecipitation; peptide pull-down; peptide array overlay) we have used to validate and characterize cavin-1/SOCS3 interactions in vitro.


Assuntos
Imunoprecipitação/métodos , Análise Serial de Proteínas/métodos , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Biotina/química , Cavéolas/metabolismo , Células HEK293 , Humanos , Janus Quinases/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética
5.
Biochem Soc Trans ; 47(4): 1143-1156, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31341036

RESUMO

Inflammation has been highlighted as a key factor in pulmonary arterial hypertension (PAH) development, particularly interleukin-6 (IL-6). IL-6 activates JAK-STAT signalling to induce transcription of pro-inflammatory and pro-angiogenic genes, enabling PAH progression, as well as the transcription of suppressor of cytokine signalling 3 (SOCS3) which limits IL-6 signalling. Current PAH therapies include prostanoid drugs which induce vasodilation via stimulating intracellular 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP can also inhibit IL-6-mediated endothelial dysfunction via the induction of SOCS3. Thus, we propose that an important mechanism by which cAMP-mobilising prostanoid drugs limit PAH is by inhibiting IL-6-mediated pulmonary inflammation and remodelling via SOCS3 inhibition of IL-6 signalling. Further clarification may result in effective strategies with which to target the IL-6/JAK-STAT signalling pathway in PAH.


Assuntos
Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Prostaglandinas/farmacologia , Hipertensão Arterial Pulmonar/terapia , Transdução de Sinais/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
6.
Trends Pharmacol Sci ; 40(5): 298-308, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948191

RESUMO

Defective regulation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway in cancers, haematological diseases, and chronic inflammatory conditions highlights its clinical significance. While several biologic and small molecule therapeutics targeting this pathway have been developed, these have several limitations. Therefore, there is a need to identify new targets for intervention. Suppressor of cytokine signalling (SOCS) proteins are a family of inducible inhibitors of cytokine receptors that activate the JAK-STAT pathway. Here we propose that newly identified mechanisms controlling SOCS function could be exploited to develop molecularly targeted drugs with unique modes of action to inhibit JAK-STAT signalling in disease.


Assuntos
Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Humanos , Janus Quinases/antagonistas & inibidores , Terapia de Alvo Molecular , Fatores de Transcrição STAT/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores
7.
Ann Rheum Dis ; 78(7): 929-933, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31018959

RESUMO

OBJECTIVE: We investigated whether the normal human spinal enthesis contained resident myeloid cell populations, capable of producing pivotal proinflammatory cytokines including tumour necrosis factor (TNF) and interleukin (IL)-23 and determined whether these could be modified by PDE4 inhibition. METHODS: Normal human enthesis soft tissue (ST) and adjacent perientheseal bone (PEB) (n=15) were evaluated using immunohistochemistry (IHC), digested for myeloid cell phenotyping, sorted and stimulated with different adjuvants (lipopolysaccharide and mannan). Stimulated enthesis fractions were analysed for inducible production of spondyloarthropathy disease-relevant mediators (IL-23 full protein, TNF, IL-1ß and CCL20). Myeloid populations were also compared with matched blood populations for further mRNA analysis and the effect of PDE4 inhibition was assessed. RESULTS: A myeloid cell population (CD45+ HLADR+ CD14+ CD11c+) phenotype was isolated from both the ST and adjacent PEB and termed 'CD14+ myeloid cells' with tissue localisation confirmed by CD14+ IHC. The CD14- fraction contained a CD123+ HLADR+ CD11c- cell population (plasmacytoid dendritic cells). The CD14+ population was the dominant entheseal producer of IL-23, IL-1ß, TNF and CCL20. IL-23 and TNF from the CD14+ population could be downregulated by a PDE4I and other agents (histamine and 8-Bromo-cAMP) which elevate cAMP. Entheseal CD14+ cells had a broadly similar gene expression profile to the corresponding CD14+ population from matched blood but showed significantly lower CCR2 gene expression. CONCLUSIONS: The human enthesis contains a CD14+ myeloid population that produces most of the inducible IL-23, IL-1ß, TNF and CCL20. This population has similar gene expression profile to the matched blood CD14+ population.


Assuntos
Células do Tecido Conjuntivo/metabolismo , Interleucina-23/biossíntese , Células Mieloides/metabolismo , Quimiocina CCL20/biossíntese , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Células Dendríticas/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-1beta/biossíntese , Receptores de Lipopolissacarídeos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
8.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563079

RESUMO

Protein kinase B (Akt) is a key enzyme in the insulin signalling cascade, required for insulin-stimulated NO production in endothelial cells (ECs). Previous studies have suggested that AMP-activated protein kinase (AMPK) activation stimulates NO synthesis and enhances insulin-stimulated Akt activation, yet these studies have largely used indirect activators of AMPK. The effects of the allosteric AMPK activator A769662 on insulin signalling and endothelial function was therefore examined in cultured human macrovascular ECs. Surprisingly, A769662 inhibited insulin-stimulated NO synthesis and Akt phosphorylation in human ECs from umbilical veins (HUVECs) and aorta (HAECs). In contrast, the AMPK activators compound 991 and AICAR had no substantial inhibitory effect on insulin-stimulated Akt phosphorylation in ECs. Inhibition of AMPK with SBI-0206965 had no effect on the inhibition of insulin-stimulated Akt phosphorylation by A769662, suggesting the inhibitory action of A769662 is AMPK-independent. A769662 decreased IGF1-stimulated Akt phosphorylation yet had no effect on VEGF-stimulated Akt signalling in HUVECs, suggesting that A769662 attenuates early insulin/IGF1 signalling. The effects of A769662 on insulin-stimulated Akt phosphorylation were specific to human ECs, as no effect was observed in the human cancer cell lines HepG2 or HeLa, as well as in mouse embryonic fibroblasts (MEFs). A769662 inhibited insulin-stimulated Erk1/2 phosphorylation in HAECs and MEFs, an effect that was independent of AMPK in MEFs. Therefore, despite being a potent AMPK activator, A769662 has effects unlikely to be mediated by AMPK in human macrovascular ECs that reduce insulin sensitivity and eNOS activation.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Aorta/enzimologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pironas/farmacologia , Tiofenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aorta/citologia , Compostos de Bifenilo , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Pharmacol Res ; 128: 88-100, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29037480

RESUMO

Exaggerated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling is key to the pathogenesis of pro-inflammatory disorders, such as rheumatoid arthritis and cardiovascular diseases. Mutational activation of JAKs is also responsible for several haematological malignancies, including myeloproliferative neoplasms and acute lymphoblastic leukaemia. Accumulating evidence links adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), an energy sensor and regulator of organismal and cellular metabolism, with the suppression of immune and inflammatory processes. Recent studies have shown that activation of AMPK can limit JAK-STAT-dependent signalling pathways via several mechanisms. These novel findings support AMPK activation as a strategy for management of an array of disorders characterised by hyper-activation of the JAK-STAT pathway. This review discusses the pivotal role of JAK-STAT signalling in a range of disorders and how both established clinically used and novel AMPK activators might be used to treat these conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais
10.
Mol Cell Endocrinol ; 440: 44-56, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27840174

RESUMO

Inflammation of adipose tissue in obesity is associated with increased IL-1ß, IL-6 and TNF-α secretion and proposed to contribute to insulin resistance. AMP-activated protein kinase (AMPK) regulates nutrient metabolism and is reported to have anti-inflammatory actions in adipose tissue, yet the mechanisms underlying this remain poorly characterised. The effect of AMPK activation on cytokine-stimulated proinflammatory signalling was therefore assessed in cultured adipocytes. AMPK activation inhibited IL-1ß-stimulated CXCL10 secretion, associated with reduced interleukin-1 receptor associated kinase-4 (IRAK4) phosphorylation and downregulated MKK4/JNK and IKK/IκB/NFκB signalling. AMPK activation inhibited TNF-α-stimulated IKK/IκB/NFκB signalling but had no effect on JNK phosphorylation. The JAK/STAT3 pathway was also suppressed by AMPK after IL-6 stimulation and during adipogenesis. Adipose tissue from AMPKα1-/- mice exhibited increased JNK and STAT3 phosphorylation, supporting suppression of these distinct proinflammatory pathways by AMPK in vivo. The inhibition of multiple pro-inflammatory signalling pathways by AMPK may underlie the reported beneficial effects of AMPK activation in adipose tissue.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/enzimologia , Adipócitos/patologia , Inflamação/enzimologia , Inflamação/patologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Compostos de Bifenilo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Pironas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Tiofenos/farmacologia
11.
Sci Signal ; 9(453): ra109, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27919027

RESUMO

Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a pivotal regulator of metabolism at cellular and organismal levels. AMPK also suppresses inflammation. We found that pharmacological activation of AMPK rapidly inhibited the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in various cells. In vitro kinase assays revealed that AMPK directly phosphorylated two residues (Ser515 and Ser518) within the Src homology 2 domain of JAK1. Activation of AMPK enhanced the interaction between JAK1 and 14-3-3 proteins in cultured vascular endothelial cells and fibroblasts, an effect that required the presence of Ser515 and Ser518 and was abolished in cells lacking AMPK catalytic subunits. Mutation of Ser515 and Ser518 abolished AMPK-mediated inhibition of JAK-STAT signaling stimulated by either the sIL-6Rα/IL-6 complex or the expression of a constitutively active V658F-mutant JAK1 in human fibrosarcoma cells. Clinically used AMPK activators metformin and salicylate enhanced the inhibitory phosphorylation of endogenous JAK1 and inhibited STAT3 phosphorylation in primary vascular endothelial cells. Therefore, our findings reveal a mechanism by which JAK1 function and inflammatory signaling may be suppressed in response to metabolic stress and provide a mechanistic rationale for the investigation of AMPK activators in a range of diseases associated with enhanced activation of the JAK-STAT pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/metabolismo , Janus Quinase 1/metabolismo , Transdução de Sinais/fisiologia , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos , Animais , Células Endoteliais/citologia , Ativação Enzimática , Janus Quinase 1/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Fosforilação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
12.
Biochem J ; 473(24): 4681-4697, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27784766

RESUMO

The key metabolic regulator, AMP-activated protein kinase (AMPK), is reported to be down-regulated in metabolic disorders, but the mechanisms are poorly characterised. Recent studies have identified phosphorylation of the AMPKα1/α2 catalytic subunit isoforms at Ser487/491, respectively, as an inhibitory regulation mechanism. Vascular endothelial growth factor (VEGF) stimulates AMPK and protein kinase B (Akt) in cultured human endothelial cells. As Akt has been demonstrated to be an AMPKα1 Ser487 kinase, the effect of VEGF on inhibitory AMPK phosphorylation in cultured primary human endothelial cells was examined. Stimulation of endothelial cells with VEGF rapidly increased AMPKα1 Ser487 phosphorylation in an Akt-independent manner, without altering AMPKα2 Ser491 phosphorylation. In contrast, VEGF-stimulated AMPKα1 Ser487 phosphorylation was sensitive to inhibitors of protein kinase C (PKC) and PKC activation using phorbol esters or overexpression of PKC-stimulated AMPKα1 Ser487 phosphorylation. Purified PKC and Akt both phosphorylated AMPKα1 Ser487 in vitro with similar efficiency. PKC activation was associated with reduced AMPK activity, as inhibition of PKC increased AMPK activity and phorbol esters inhibited AMPK, an effect lost in cells expressing mutant AMPKα1 Ser487Ala. Consistent with a pathophysiological role for this modification, AMPKα1 Ser487 phosphorylation was inversely correlated with insulin sensitivity in human muscle. These data indicate a novel regulatory role of PKC to inhibit AMPKα1 in human cells. As PKC activation is associated with insulin resistance and obesity, PKC may underlie the reduced AMPK activity reported in response to overnutrition in insulin-resistant metabolic and vascular tissues.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Quinase C/metabolismo , Linhagem Celular , Células HEK293 , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
Trends Pharmacol Sci ; 36(4): 203-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25744542

RESUMO

Pharmaceutical manipulation of cAMP levels exerts beneficial effects through the regulation of the exchange protein activated by cAMP (EPAC) and protein kinase A (PKA) signalling routes. Recent attention has turned to the specific regulation of EPAC isoforms (EPAC1 and EPAC2) as a more targeted approach to cAMP-based therapies. For example, EPAC2-selective agonists could promote insulin secretion from pancreatic ß cells, whereas EPAC1-selective agonists may be useful in the treatment of vascular inflammation. By contrast, EPAC1 and EPAC2 antagonists could both be useful in the treatment of heart failure. Here we discuss whether the best way forward is to design EPAC-selective agonists or antagonists and the current strategies being used to develop isoform-selective, small-molecule regulators of EPAC1 and EPAC2 activity.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Animais , AMP Cíclico/agonistas , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/metabolismo , Previsões , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
Cells ; 3(2): 546-62, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24886706

RESUMO

The realisation that unregulated activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is a key driver of a wide range of diseases has identified its components as targets for therapeutic intervention by small molecule inhibitors and biologicals. In this review, we discuss JAK-STAT signalling pathway inhibition by the inducible inhibitor "suppressor of cytokine signaling 3 (SOCS3), its role in diseases such as myeloproliferative disorders, and its function as part of a multi-subunit E3 ubiquitin ligase complex. In addition, we highlight potential applications of these insights into SOCS3-based therapeutic strategies for management of conditions such as vascular re-stenosis associated with acute vascular injury, where there is strong evidence that multiple processes involved in disease progression could be attenuated by localized potentiation of SOCS3 expression levels.

15.
Biochem Soc Trans ; 42(2): 284-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646232

RESUMO

Caveolae are curved lipid raft regions rich in cholesterol and sphingolipids found abundantly in vascular endothelial cells, adipocytes, smooth muscle cells and fibroblasts. They are multifunctional organelles with roles in clathrin-independent endocytosis, cholesterol transport, mechanosensing and signal transduction. Caveolae provide an environment where multiple receptor signalling components are sequestered, clustered and compartmentalized for efficient signal transduction. Many of these receptors, including cytokine signal transducer gp130 (glycoprotein 130), are mediators of chronic inflammation during atherogenesis. Subsequently, disruption of these organelles is associated with a broad range of disease states including cardiovascular disease and cancer. Cavin-1 is an essential peripheral component of caveolae that stabilizes caveolin-1, the main structural/integral membrane protein of caveolae. Caveolin-1 is an essential regulator of eNOS (endothelial nitric oxide synthase) and its disruption leads to endothelial dysfunction which initiates a range of cardiovascular and pulmonary disorders. Although dysfunctional cytokine signalling is also a hallmark of cardiovascular disease, knowledge of caveolae-dependent cytokine signalling is lacking as is the role of cavin-1 independent of caveolae. The present review introduces caveolae, their structural components, the caveolins and cavins, their regulation by cAMP, and their potential role in cardiovascular disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Animais , AMP Cíclico/metabolismo , Humanos , Transdução de Sinais/fisiologia
16.
Mol Cell ; 50(3): 394-406, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23603120

RESUMO

Tumor cells undergo changes in metabolism to meet their energetic and anabolic needs. It is conceivable that mechanisms exist to sense these changes and link them to pathways that eradicate cells primed for cancer development. We report that the tumor suppressor p53 activates a cell death priming mechanism that senses extracellular adenosine. Adenosine, the backbone of ATP, accumulates under conditions of cellular stress or altered metabolism. We show that its receptor, A2B, is upregulated by p53. A2B expression has little effect on cell viability, but ligand engagement activates a caspase- and Puma-dependent apoptotic response involving downregulation of antiapoptotic Bcl-2 proteins. Stimulation of A2B also significantly enhances cell death mediated by p53 and upon accumulation of endogenous adenosine following chemotherapeutic drug treatment and exposure to hypoxia. Since extracellular adenosine also accumulates within many solid tumors, this distinct p53 function links programmed cell death to both a cancer- and therapy-associated metabolic change.


Assuntos
Adenosina/genética , Adenosina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/genética , Caspases/metabolismo , Morte Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Regulação para Baixo/genética , Células HCT116 , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Regulação para Cima/genética
17.
Expert Opin Investig Drugs ; 21(8): 1155-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22694351

RESUMO

INTRODUCTION: AMP-activated protein kinase (AMPK) is the downstream component of a serine/threonine protein kinase cascade involved in the regulation of metabolism. Many studies have also revealed that AMPK activation can exert significant anti-inflammatory and immunosuppressive effects in a variety of cell types and models of inflammatory/autoimmune disease. Because metformin, an AMPK activator that is a favored first-line therapeutic option for type 2 diabetes, may confer benefits in chronic inflammatory diseases and cancers independent of its ability to normalize blood glucose, there is now considerable interest in identifying and exploiting AMPK's anti-inflammatory effects. AREAS COVERED: The authors provide a background to AMPK signaling and describe the pro-inflammatory signaling pathways and processes shown to be regulated by AMPK activation. EXPERT OPINION: Identification of AMPK subunits responsible for specific anti-inflammatory effects, and a molecular understanding of the mechanisms involved, will be necessary to exploit AMPK pathway activation in acute and chronic inflammatory disease settings while minimizing adverse reactions due to deregulation of AMPK's wide-ranging effects on metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Animais , Ativação Enzimática , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/enzimologia , Doenças Metabólicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Cell Signal ; 24(8): 1504-14, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22504159

RESUMO

Whilst androgen ablation therapy is used to treat locally advanced or metastatic forms of prostate cancer, side-effects can include the emergence of an androgen-independent neuroendocrine cell population which is associated with poor prognosis. Here we have examined how cyclic AMP elevation regulates early events in the neuroendocrine differentiation process. We demonstrate that selective activation of protein kinase A is necessary and sufficient for cyclic AMP (cAMP) elevation to rapidly promote a neuroendocrine phenotype in LNCaP cells independent of de novo protein synthesis. Furthermore, the effects of cAMP could be recapitulated by inhibition of RhoA signalling or pharmacological inhibition of Rho kinase. Conversely, expression of constitutively active Gln63Leu-mutated RhoA acted as a dominant-negative inhibitor of cAMP-mediated NE phenotype formation. Consistent with these observations, cAMP elevation triggered the PKA-dependent phosphorylation of RhoA on serine 188, and a non-phosphorylatable Ser188Ala RhoA mutant functioned as a dominant-negative inhibitor of cAMP-mediated neuroendocrine phenotype formation. These results suggest that PKA-mediated inhibition of RhoA via its phosphorylation on serine 188 and the subsequent inhibition of ROCK activity plays a key role in determining initial changes in cellular morphology during LNCaP cell differentiation to a neuroendocrine phenotype. It also raises the possibility that targeted suppression of this pathway to inhibit neuroendocrine cell expansion might be a useful adjuvant to conventional prostate cancer therapy.


Assuntos
Carcinoma Neuroendócrino/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Fosfosserina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Carcinoma Neuroendócrino/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Células Epiteliais/patologia , Humanos , Masculino , Fenótipo , Fosforilação , Células Tumorais Cultivadas , Proteína rhoA de Ligação ao GTP/química
19.
Biochem Soc Trans ; 40(1): 1-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260656

RESUMO

Chronic inflammatory diseases, such as atherosclerosis, are a major cause of death and disability in the developed world. In this respect, although cholesterol obviously plays a predominant role in atherosclerosis, targeting inflammation at lesion sites may be just as important. Indeed, elevated IL-6 (interleukin 6) levels are as strongly associated with coronary heart disease as increased cholesterol. We have been investigating novel cAMP-regulated pathways that combat the action of pro-inflammatory cytokines, such as IL-6 and leptin, in the VECs (vascular endothelial cells) of the circulatory system. In this respect, we have begun to unravel new molecular mechanisms by which the cAMP/Epac1 (exchange protein directly activated by cAMP 1)/Rap1 pathway can initiate a rigorous programme of protective anti-inflammatory responses in VECs. Central to this is the coupling of cAMP elevation to the mobilization of two C/EBP (CCAAT/enhancer-binding protein) family transcription factors, resulting in the induction of the SOCS3 (suppressor of cytokine signalling 3) gene, which attenuates pro-inflammatory cytokine signalling in VECs. These novel 'protective' mechanisms of cAMP action will inform the development of the next generation of pharmaceuticals specifically designed to combat endothelial inflammation associated with cardiovascular disease.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transcrição Gênica , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
20.
Methods Mol Biol ; 809: 201-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22113278

RESUMO

The ability of prototypical second messenger cyclic AMP (cAMP) to positively control transcription of the somatostatin gene was pivotal to the original identification of the transcription factor cAMP response element-binding protein. However, it is now clear that alternative intracellular cAMP sensors, of which the exchange protein directly activated by cAMP (Epac) proteins have been studied most intensively, also initiate transcription of key genes in response to cAMP elevation. For example, we have demonstrated in vascular endothelial cells that activation of Epac1 is necessary for cAMP-mobilizing agents to trigger the induction of the gene-encoding suppressor of cytokine signaling-3 (SOCS-3), a potent inhibitor of interleukin (IL)-6 signaling. This is achieved through the recruitment of CCAAT/enhancer-binding protein (C/EBP) transcription factors to the SOCS-3 promoter. Here, we describe in detail how to identify and measure cAMP-mediated recruitment of a specific C/EBP isoform to a candidate regulator region of the SOCS-3 promoter in vascular endothelial cells in vitro. We also describe the RNA interference strategies with which we identified a role for Epac1 and SOCS-3 in being responsible for mediating the inhibitory effect of cAMP elevation on IL-6 signaling.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , AMP Cíclico/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Humanos , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno , Proteína 3 Supressora da Sinalização de Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA