Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(1): 483-493, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38109371

RESUMO

Proton magnetic resonance spectroscopy (1H-MRS) of surgically collected tumor specimens may contribute to investigating cancer metabolism and the significance of the "total choline" (tCho) peak (3.2 ppm) as malignancy and therapy response biomarker. To ensure preservation of intrinsic metabolomic information, standardized handling procedures are needed. The effects of time to freeze (cold ischemia) were evaluated in (a) surgical epithelial ovarian cancer (EOC) specimens using high-resolution (HR) 1H-MRS (9.4 T) of aqueous extracts and (b) preclinical EOC samples (xenografts in SCID mice) investigated by in vivo MRI-guided 1H-MRS (4.7 T) and by HR-1H-MRS (9.4 T) of tumor extracts or intact fragments (using magic-angle-spinning (MAS) technology). No significant changes were found in the levels of 27 of 29 MRS-detected metabolites (including the tCho profile) in clinical specimens up to 2 h cold ischemia, besides an increase in lysine and a decrease in glutathione. EOC xenografts showed a 2-fold increase in free choline within 2 h cold ischemia, without further significant changes for any MRS-detected metabolite (including phosphocholine and tCho) up to 6 h. At shorter times (≤1 h), HR-MAS analyses showed unaltered tCho components, along with significant changes in lactate, glutamate, and glutamine. Our results support the view that a time to freeze of 1 h represents a safe threshold to ensure the maintenance of a reliable tCho profile in EOC specimens.


Assuntos
Isquemia Fria , Neoplasias Ovarianas , Camundongos , Animais , Humanos , Feminino , Espectroscopia de Ressonância Magnética/métodos , Camundongos SCID , Metaboloma , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/metabolismo , Colina/metabolismo
2.
NMR Biomed ; 32(10): e4016, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30375088

RESUMO

Although several drugs are available to treat recurrences of human epithelial ovarian cancer (EOC), clinical responses often remain short lived and lead to only marginal improvements in patients' survival. One of the new drugs proposed for recurrent platinum-resistant EOC patients is trabectedin (Trab), a marine-derived antitumor agent initially isolated from the tunicate Ecteinascidia turbinata and currently produced synthetically. Predictive biomarkers of therapy response to this drug and the potential use of non-invasive functional MRI and MRS approaches for an early assessment of Trab efficacy have not yet been evaluated, although they might be relevant for improving the clinical management of EOC patients. In the present work we combined functional and spectroscopic magnetic resonance technologies, such as in vivo diffusion-weighted MRI and 1 H MRS, with ex vivo high resolution MRS (HR-MRS) metabolomic analyses, with the aim of identifying new pharmacodynamic markers of Trab effectiveness on well characterized, highly aggressive human SKOV3.ip (a HER2-enriched cell variant derived from SKOV3 cells) EOC xenografts. In vivo treatment with Trab (three consecutive weekly 0.2 mg/kg i.v. injections) resulted in the following: (1) a significant reduction of in vivo tumor growth, along with the formation in cancer lesions of diffuse hyper-intense areas detected by T2 -weighted MRI and attributed to necrosis, in agreement with histopathology findings; (2) significant increases in the apparent diffusion coefficient mean and median values versus saline-treated control tumors; and (3) a significant reduction in the choline-containing metabolites' signal detected by quantitative in vivo MRS. Multivariate and quantitative HR-MRS analyses on ex vivo tissue samples revealed Trab-induced alterations in phospholipid and glucose metabolism identified as a decrease in phosphocholine and an increase in lactate. Collectively, these data identify Trab-induced functional MRI and MRS alterations in EOC models as a possible basis for further developments of these non-invasive imaging methods to improve the clinical management of EOC patients.


Assuntos
Espectroscopia de Ressonância Magnética , Metabolômica , Imagem Molecular , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Trabectedina/uso terapêutico , Animais , Linhagem Celular Tumoral , Imagem de Difusão por Ressonância Magnética , Feminino , Glucose/metabolismo , Humanos , Imageamento por Ressonância Magnética , Redes e Vias Metabólicas , Metaboloma , Camundongos SCID , Neoplasias Ovarianas/metabolismo , Fosfolipídeos/metabolismo , Extratos de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA