Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 9(7): 1882-1896, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32502338

RESUMO

Protein-protein interactions govern many cellular processes, and identifying binding interaction sites on proteins can facilitate the discovery of inhibitors to block such interactions. Here we identify peptides from a randomly fragmented plasmid encoding the ß-lactamase inhibitory protein (BLIP) and the Lac repressor (LacI) that represent regions of protein-protein interactions. We utilized a Jun-Fos-assisted phage display system that has previously been used to screen cDNA and genomic libraries to identify antibody antigens. Affinity selection with polyclonal antibodies against LacI or BLIP resulted in the rapid enrichment of in-frame peptides from various regions of the proteins. Further, affinity selection with ß-lactamase enriched peptides that encompass regions of BLIP previously shown to contribute strongly to the binding energy of the BLIP/ß-lactamase interaction, i.e., hotspot residues. Further, one of the regions enriched by affinity selection encompassed a disulfide-constrained region of BLIP that forms part of the BLIP interaction surface in the native complex that we show also binds to ß-lactamase as a disulfide-constrained macrocycle peptide with a KD of ∼1 µM. Fragmented open reading frame (ORF) libraries may efficiently identify such naturally constrained peptides at protein-protein interaction interfaces. With sufficiently deep coverage of ORFs by peptide-coding inserts, phage display and deep sequencing can provide detailed information on the domains or peptides that contribute to an interaction. Such information should enable the design of potentially therapeutic macrocycles or peptidomimetics that block the interaction.


Assuntos
Bacteriófagos/genética , Técnicas de Visualização da Superfície Celular/métodos , Genes fos , Genes jun , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biblioteca de Peptídeos , Mapas de Interação de Proteínas/genética , Anticorpos/imunologia , Bacteriófagos/metabolismo , Desenho de Fármacos , Descoberta de Drogas/métodos , Repressores Lac/química , Repressores Lac/imunologia , Zíper de Leucina , Compostos Macrocíclicos/química , Fases de Leitura Aberta , Peptidomiméticos/química , Plasmídeos/genética , Domínios Proteicos , Mapeamento de Interação de Proteínas/métodos , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/imunologia , beta-Lactamases/química
2.
Cell Rep ; 29(11): 3448-3459.e6, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825828

RESUMO

Oncogenic RAS mutations drive cancers at many sites. Recent reports suggest that RAS dimerization, multimerization, and clustering correlate strongly with activation of RAS signaling. We have found that re-expression of DIRAS3, a RAS-related small GTPase tumor suppressor that is downregulated in multiple cancers, inhibits RAS/mitogen-activated protein kinase (MAPK) signaling by interacting directly with RAS-forming heteromers, disrupting RAS clustering, inhibiting Raf kinase activation, and inhibiting transformation and growth of cancer cells and xenografts. Disruption of K-RAS cluster formation requires the N terminus of DIRAS3 and interaction of both DIRAS3 and K-RAS with the plasma membrane. Interaction of DIRAS3 with both K-RAS and H-RAS suggests a strategy for inhibiting oncogenic RAS function.


Assuntos
Carcinogênese/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3 , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/metabolismo
3.
Cancers (Basel) ; 11(4)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003488

RESUMO

Autophagy can protect cancer cells from acute starvation and enhance resistance to chemotherapy. Previously, we reported that autophagy plays a critical role in the survival of dormant, drug resistant ovarian cancer cells using human xenograft models and correlated the up-regulation of autophagy and DIRAS3 expression in clinical samples obtained during "second look" operations. DIRAS3 is an imprinted tumor suppressor gene that encodes a 26 kD GTPase with homology to RAS that inhibits cancer cell proliferation and motility. Re-expression of DIRAS3 in ovarian cancer xenografts also induces dormancy and autophagy. DIRAS3 can bind to Beclin1 forming the Autophagy Initiation Complex that triggers autophagosome formation. Both the N-terminus of DIRAS3 (residues 15-33) and the switch II region of DIRAS3 (residues 93-107) interact directly with BECN1. We have identified an autophagy-inhibiting peptide based on the switch II region of DIRAS3 linked to Tat peptide that is taken up by ovarian cancer cells, binds Beclin1 and inhibits starvation-induced DIRAS3-mediated autophagy.

4.
Antioxid Redox Signal ; 30(16): 1900-1910, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358421

RESUMO

AIMS: Quantitative imaging of glutathione (GSH) with high spatial and temporal resolution is essential for studying the roles of GSH in redox biology. To study the long-standing question of compartmentalization of GSH, especially its distribution between the nucleus and cytosol, an organelle-targeted quantitative probe is needed. RESULTS: We developed a reversible reaction-based ratiometric fluorescent probe-HaloRT-that can quantitatively measure GSH dynamics with subcellular resolution in real time. Using HaloRT, we quantitatively measured the GSH concentrations in the nucleus and cytosol of HeLa cells and primary hepatocytes under different treatment conditions and found no appreciable concentration gradients between these two organelles. Innovation and Conclusion: We developed the first reversible ratiometric GSH probe that can be universally targeted to any organelle of interest. Taking advantage of this new tool, we provided definitive evidence showing that GSH concentrations are not significantly different between the nucleus and cytosol, challenging the view of nuclear compartmentalization of GSH.


Assuntos
Biomarcadores , Glutationa/metabolismo , Imagem Molecular , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Microscopia Confocal , Estrutura Molecular , Oxirredução
5.
Proc Natl Acad Sci U S A ; 113(18): 4970-5, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27084884

RESUMO

Protein-protein interactions (PPIs) play a central role in most biological processes, and therefore represent an important class of targets for therapeutic development. However, disrupting PPIs using small-molecule inhibitors (SMIs) is challenging and often deemed as "undruggable." We developed a cell-based functional assay for high-throughput screening to identify SMIs for steroid receptor coactivator-3 (SRC-3 or AIB1), a large and mostly unstructured nuclear protein. Without any SRC-3 structural information, we identified SI-2 as a highly promising SMI for SRC-3. SI-2 meets all of the criteria of Lipinski's rule [Lipinski et al. (2001) Adv Drug Deliv Rev 46(1-3):3-26] for a drug-like molecule and has a half-life of 1 h in a pharmacokinetics study and a reasonable oral availability in mice. As a SRC-3 SMI, SI-2 can selectively reduce the transcriptional activities and the protein concentrations of SRC-3 in cells through direct physical interactions with SRC-3, and selectively induce breast cancer cell death with IC50 values in the low nanomolar range (3-20 nM), but not affect normal cell viability. Furthermore, SI-2 can significantly inhibit primary tumor growth and reduce SRC-3 protein levels in a breast cancer mouse model. In a toxicology study, SI-2 caused minimal acute cardiotoxicity based on a hERG channel blocking assay and an unappreciable chronic toxicity to major organs based on histological analyses. We believe that this work could significantly improve breast cancer treatment through the development of "first-in-class" drugs that target oncogenic coactivators.


Assuntos
Benzimidazóis/farmacologia , Hidrazonas/farmacologia , Coativador 3 de Receptor Nuclear/antagonistas & inibidores , Animais , Benzimidazóis/farmacocinética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Hidrazonas/farmacocinética , Camundongos , Coativador 3 de Receptor Nuclear/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
6.
Cancer Cell ; 28(2): 240-52, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26267537

RESUMO

By integrating growth pathways on which cancer cells rely, steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) represent emerging targets in cancer therapeutics. High-throughput screening for SRC small molecule inhibitors (SMIs) uncovered MCB-613 as a potent SRC small molecule "stimulator" (SMS). We demonstrate that MCB-613 can super-stimulate SRCs' transcriptional activity. Further investigation revealed that MCB-613 increases SRCs' interactions with other coactivators and markedly induces ER stress coupled to the generation of reactive oxygen species (ROS). Because cancer cells overexpress SRCs and rely on them for growth, we show that we can exploit MCB-613 to selectively induce excessive stress in cancer cells. This suggests that over-stimulating the SRC oncogenic program can be an effective strategy to kill cancer cells.


Assuntos
Neoplasias/prevenção & controle , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cicloexanonas/química , Cicloexanonas/metabolismo , Cicloexanonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Células MCF-7 , Estrutura Molecular , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Coativador 1 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/genética , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Proc Natl Acad Sci U S A ; 111(51): 18261-6, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489091

RESUMO

The androgen receptor (AR) is a key driver of prostate cancer (PC), even in the state of castration-resistant PC (CRPC) and frequently even after treatment with second-line hormonal therapies such as abiraterone and enzalutamide. The persistence of AR activity via both ligand-dependent and ligand-independent mechanisms (including constitutively active AR splice variants) highlights the unmet need for alternative approaches to block AR signaling in CRPC. We investigated the transcription factor GATA-binding protein 2 (GATA2) as a regulator of AR signaling and an actionable therapeutic target in PC. We demonstrate that GATA2 directly promotes expression of both full-length and splice-variant AR, resulting in a strong positive correlation between GATA2 and AR expression in both PC cell lines and patient specimens. Conversely, GATA2 expression is repressed by androgen and AR, suggesting a negative feedback regulatory loop that, upon androgen deprivation, derepresses GATA2 to contribute to AR overexpression in CRPC. Simultaneously, GATA2 is necessary for optimal transcriptional activity of both full-length and splice-variant AR. GATA2 colocalizes with AR and Forkhead box protein A1 on chromatin to enhance recruitment of steroid receptor coactivators and formation of the transcriptional holocomplex. In agreement with these important functions, high GATA2 expression and transcriptional activity predicted worse clinical outcome in PC patients. A GATA2 small molecule inhibitor suppressed the expression and transcriptional function of both full-length and splice-variant AR and exerted potent anticancer activity against PC cell lines. We propose pharmacological inhibition of GATA2 as a first-in-field approach to target AR expression and function and improve outcomes in CRPC.


Assuntos
Fator de Transcrição GATA2/fisiologia , Coativadores de Receptor Nuclear/metabolismo , Receptores Androgênicos/metabolismo , Proliferação de Células , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Prognóstico , Receptores Androgênicos/fisiologia , Transdução de Sinais , Transcrição Gênica/fisiologia
8.
Antimicrob Agents Chemother ; 58(11): 6668-74, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155594

RESUMO

Ceftaroline is the first member of a novel class of cephalosporins approved for use in the United States. Although prior studies have identified eight ceftaroline-resistant methicillin-resistant Staphylococcus aureus (MRSA) isolates in Europe and Asia with MICs ranging from 4 to 8 mg/liter, high-level resistance to ceftaroline (>32 mg/liter) has not been described in MRSA strains isolated in the United States. We isolated a ceftaroline-resistant (MIC > 32 mg/liter) MRSA strain from the blood of a cystic fibrosis patient and five MRSA strains from the respiratory tract of this patient. Whole-genome sequencing identified two amino acid-altering mutations uniquely present in the ceftaroline-binding pocket of the transpeptidase region of penicillin-binding protein 2a (PBP2a) in ceftaroline-resistant isolates. Biochemical analyses and the study of isogenic mutant strains confirmed that these changes caused ceftaroline resistance. Thus, we identified the molecular mechanism of ceftaroline resistance in the first MRSA strain with high-level ceftaroline resistance isolated in the United States.


Assuntos
Antibacterianos/uso terapêutico , Cefalosporinas/uso terapêutico , Farmacorresistência Bacteriana/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/genética , Adulto , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Fibrose Cística , DNA Bacteriano/genética , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Análise de Sequência de DNA , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Adulto Jovem , Ceftarolina
9.
PLoS One ; 9(4): e95243, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743578

RESUMO

Members of the steroid receptor coactivator (SRC) family are overexpressed in numerous types of cancers. In particular, steroid receptor coactivator 3 (SRC-3) has been recognized as a critical coactivator associated with tumor initiation, progression, recurrence, metastasis, and chemoresistance where it interacts with multiple nuclear receptors and other transcription factors to enhance their transcriptional activities and facilitate cross-talk between pathways that stimulate cancer progression. Because of its central role as an integrator of growth signaling pathways, development of small molecule inhibitors (SMIs) against SRCs have the potential to simultaneously disrupt multiple signal transduction networks and transcription factors involved in tumor progression. Here, high-throughput screening was performed to identify compounds able to inhibit the intrinsic transcriptional activities of the three members of the SRC family. Verrucarin A was identified as a SMI that can selectively promote the degradation of the SRC-3 protein, while affecting SRC-1 and SRC-2 to a lesser extent and having no impact on CARM-1 and p300 protein levels. Verrucarin A was cytotoxic toward multiple types of cancer cells at low nanomolar concentrations, but not toward normal liver cells. Moreover, verrucarin A was able to inhibit expression of the SRC-3 target genes MMP2 and MMP13 and attenuated cancer cell migration. We found that verrucarin A effectively sensitized cancer cells to treatment with other anti-cancer drugs. Binding studies revealed that verrucarin A does not bind directly to SRC-3, suggesting that it inhibits SRC-3 through its interaction with an upstream effector. In conclusion, unlike other SRC SMIs characterized by our laboratory that directly bind to SRCs, verrucarin A is a potent and selective SMI that blocks SRC-3 function through an indirect mechanism.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Coativador 3 de Receptor Nuclear/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tricotecenos/farmacologia , Antineoplásicos Fitogênicos/química , Células HeLa , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Tricotecenos/química , Fatores de Transcrição de p300-CBP/metabolismo
10.
Cancer Res ; 74(5): 1506-1517, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24390736

RESUMO

Virtually all transcription factors partner with coactivators that recruit chromatin remodeling factors and interact with the basal transcription machinery. Coactivators have been implicated in cancer cell proliferation, invasion, and metastasis, including the p160 steroid receptor coactivator (SRC) family composed of SRC-1 (NCOA1), SRC-2 (TIF2/GRIP1/NCOA2), and SRC-3 (AIB1/ACTR/NCOA3). Given their broad involvement in many cancers, they represent candidate molecular targets for new chemotherapeutics. Here, we report on the results of a high-throughput screening effort that identified the cardiac glycoside bufalin as a potent small-molecule inhibitor for SRC-3 and SRC-1. Bufalin strongly promoted SRC-3 protein degradation and was able to block cancer cell growth at nanomolar concentrations. When incorporated into a nanoparticle delivery system, bufalin was able to reduce tumor growth in a mouse xenograft model of breast cancer. Our work identifies bufalin as a potentially broad-spectrum small-molecule inhibitor for cancer.


Assuntos
Bufanolídeos/farmacologia , Coativador 1 de Receptor Nuclear/antagonistas & inibidores , Coativador 3 de Receptor Nuclear/antagonistas & inibidores , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Digoxina/farmacologia , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos SCID , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Clin Microbiol ; 51(6): 1803-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23554202

RESUMO

Norovirus (NoV) is the most common agent of nonbacterial epidemic gastroenteritis and is estimated to cause 21 million cases of the disease in the United States annually. The antigen enzyme-linked immunosorbent assays (ELISAs) currently available for NoV diagnosis detect only certain strains and are approved for use in the United States only in epidemics where NoV is suspected. There is a clear need for simpler, more rapid, and more reliable diagnostic tools for the detection of NoV. In this study, phage display technology was used to screen a library of phage displaying random 12-mer peptides for those that bind to Norwalk virus virus-like particles (NV VLPs). Three phage clones displaying unique peptides were identified, and both the peptide-displaying phages and the peptides were confirmed to bind specifically to NV VLPs. The peptide displayed on phage clone NV-N-R5-1 was determined to bind to the protruding domain of the VP1 capsid protein. This phage also bound to NV VLPs seeded into NoV-negative stool with a limit of detection of 1.56 ng NV VLP. This value was comparable to monoclonal antibody (MAb) 3912, which is currently used in commercially available assays. Furthermore, the NV-N-R5-1 phage exhibited high specificity by detecting NV only in previously characterized NV-positive stool samples in contrast to no detection in NV-negative stool samples. These data demonstrate that the further development of NV-N-R5-1 phage as a diagnostic reagent is possible and might offer several distinct advantages over antibodies, such as decreases in the time and cost of production and ease of isolating phage against other epidemic strains currently circulating as well as those that are emerging.


Assuntos
Infecções por Caliciviridae/diagnóstico , Técnicas de Laboratório Clínico/métodos , Gastroenterite/diagnóstico , Norovirus/isolamento & purificação , Peptídeos , Virologia/métodos , Infecções por Caliciviridae/virologia , Fezes/virologia , Gastroenterite/virologia , Humanos , Biblioteca de Peptídeos , Peptídeos/isolamento & purificação , Ligação Proteica , Sensibilidade e Especificidade , Estados Unidos
12.
J Virol ; 87(8): 4281-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365454

RESUMO

Norwalk virus (NV), the prototype human calicivirus, is the leading cause of nonbacterial acute gastroenteritis. The NV protease cleaves the polyprotein encoded by open reading frame 1 of the viral genome at five nonhomologous sites, releasing six nonstructural proteins that are essential for viral replication. The structural details of how NV protease recognizes multiple substrates are unclear. In our X-ray structure of an NV protease construct, we observed that the C-terminal tail, representing the native substrate positions P5 to P1, is inserted into the active site cleft of the neighboring protease molecule, providing atomic details of how NV protease recognizes a substrate. The crystallographic structure of NV protease with the C-terminal tail redesigned to mimic P4 to P1 of another substrate site provided further structural details on how the active site accommodates sequence variations in the substrates. Based on these structural analyses, substrate-based aldehyde inhibitors were synthesized and screened for inhibition potency. Crystallographic structures of the protease in complex with each of the three most potent inhibitors were determined. These structures showed concerted conformational changes in the S4 and S2 pockets of the protease to accommodate variations in the P4 and P2 residues of the substrate/inhibitor, which could be a mechanism for how the NV protease recognizes multiple sites in the polyprotein with differential affinities during virus replication. These structures further indicate that the mechanism of inhibition by these inhibitors involves covalent bond formation with the side chain of the conserved cysteine in the active site by nucleophilic addition, and such substrate-based aldehydes could be effective protease inhibitors.


Assuntos
Vírus Norwalk/efeitos dos fármacos , Vírus Norwalk/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
13.
Antimicrob Agents Chemother ; 56(11): 5667-77, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22908171

RESUMO

Metallo-ß-lactamases catalyze the hydrolysis of a broad range of ß-lactam antibiotics and are a concern for the spread of drug resistance. To analyze the determinants of enzyme structure and function, the sequence requirements for the subclass B1 IMP-1 ß-lactamase zinc binding residue Cys221 were tested by saturation mutagenesis and evaluated for protein expression, as well as hydrolysis of ß-lactam substrates. The results indicated that most substitutions at position 221 destabilized the enzyme. Only the enzymes containing C221D and C221G substitutions were expressed well in Escherichia coli and exhibited catalytic activity toward ß-lactam antibiotics. Despite the lack of a metal-chelating group at position 221, the C221G enzyme exhibited high levels of catalytic activity in the presence of exogenous zinc. Molecular modeling suggests the glycine substitution is unique among substitutions in that the complete removal of the cysteine side chain allows space for a water molecule to replace the thiol and coordinate zinc at the Zn2 zinc binding site to restore function. Multiple methods were used to estimate the C221G Zn2 binding constant to be 17 to 43 µM. Studies of enzyme function in vivo in E. coli grown on minimal medium showed that both IMP-1 and the C221G mutant exhibited compromised activity when zinc availability was low. Finally, substitutions at residue 121, which is the IMP-1 equivalent of the subclass B3 zinc-chelating position, failed to rescue C221G function, suggesting the coordination schemes of subclasses B1 and B3 are not interchangeable.


Assuntos
Cisteína/metabolismo , Escherichia coli/genética , Glicina/metabolismo , Zinco/química , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Substituição de Aminoácidos , Domínio Catalítico , Cisteína/química , Cisteína/genética , Escherichia coli/enzimologia , Glicina/química , Glicina/genética , Cinética , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutagênese , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água/química , Zinco/metabolismo , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamas/química
14.
Mol Endocrinol ; 25(12): 2041-53, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22053001

RESUMO

Overexpression of steroid receptor coactivator (SRC)-1 and SRC-3 is associated with cancer initiation, metastasis, advanced disease, and resistance to chemotherapy. In most of these cases, SRC-1 and SRC-3 have been shown to promote tumor cell growth by activating nuclear receptor and multiple growth factor signaling cascades that lead to uncontrolled tumor cell growth. Up until now, most targeted chemotherapeutic drugs have been designed largely to block a single pathway at a time, but cancers frequently acquire resistance by switching to alternative growth factor pathways. We reason that the development of chemotherapeutic agents against SRC coactivators that sit at the nexus of multiple cell growth signaling networks and transcriptional factors should be particularly effective therapeutics. To substantiate this hypothesis, we report the discovery of 2,2'-bis-(Formyl-1,6,7-trihydroxy-5-isopropyl-3-methylnaphthalene (gossypol) as a small molecule inhibitor of coactivator SRC-1 and SRC-3. Our data indicate that gossypol binds directly to SRC-3 in its receptor interacting domain. In MCF-7 breast cancer cells, gossypol selectively reduces the cellular protein concentrations of SRC-1 and SRC-3 without generally altering overall protein expression patterns, SRC-2, or other coactivators, such as p300 and coactivator-associated arginine methyltransferase 1. Gossypol reduces the concentration of SRC-3 in prostate, lung, and liver cancer cell lines. Gossypol inhibits cell viability in the same cancer cell lines where it promotes SRC-3 down-regulation. Additionally, gossypol sensitizes lung and breast cancer cell lines to the inhibitory effects of other chemotherapeutic agents. Importantly, gossypol is selectively cytotoxic to cancer cells, whereas normal cell viability is not affected. This data establish the proof-of-principle that, as a class, SRC-1 and SRC-3 coactivators are accessible chemotherapeutic targets. Given their function as integrators of multiple cell growth signaling systems, SRC-1/SRC-3 small molecule inhibitors comprise a new class of drugs that have potential as novel chemotherapeutics able to defeat aspects of acquired cancer cell resistance mechanisms.


Assuntos
Antineoplásicos/farmacologia , Gossipol/farmacologia , Coativador 1 de Receptor Nuclear/antagonistas & inibidores , Coativador 3 de Receptor Nuclear/antagonistas & inibidores , Animais , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Receptor alfa de Estrogênio/metabolismo , Humanos , Concentração Inibidora 50 , Leupeptinas/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , Masculino , Camundongos , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Transcrição Gênica
15.
Mol Microbiol ; 82(6): 1481-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22040048

RESUMO

Streptococcal pyrogenic exotoxin B (SpeB) is an extracellular cysteine protease that is a critical virulence factor made by the major human pathogen group A Streptococcus (GAS). speB expression is dependent on the regulator of proteinase B (RopB) and is upregulated with increasing cell density and during infection. Because computer modelling suggested significant structural similarity between RopB and peptide-sensing regulatory proteins made by other Gram-positive bacteria, we hypothesized that speB expression is influenced by RopB-peptide interactions. Inactivation of the gene (vfr) encoding the virulence factor related (Vfr) protein resulted in increased speB transcript level during the exponential growth phase, whereas provision of only the amino-terminal region of Vfr comprising the secretion signal sequence in trans restored a wild-type speB expression profile. Addition of the culture supernatant from a Vfr signal peptide-expressing GAS strain restored wild-type speB transcript level to a vfr-inactivated isogenic mutant strain. A distinct peptide in the Vfr secretion signal sequence specifically bound to recombinant RopB. Finally, overexpression of the Vfr secretion signal sequence significantly decreased speB transcript level and attenuated GAS virulence in two mouse models of invasive infection. Taken together, these data delineate a previously unknown small peptide-mediated regulatory system that controls GAS virulence factor production.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação para Baixo , Exotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Exotoxinas/genética , Feminino , Humanos , Camundongos , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Alinhamento de Sequência , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Virulência , Fatores de Virulência/genética
16.
Protein Sci ; 20(11): 1891-906, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898650

RESUMO

Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5'-monophosphate to uridine 5'-monophosphate during pyrimidine nucleotide biosynthesis. This enzyme is one of the most proficient known, exhibiting a rate enhancement of over 17 orders of magnitude over the uncatalyzed rate. An interesting question is whether the high proficiency of ODCase is associated with a highly optimized sequence of active site residues. This question was addressed by randomizing 24 residue positions in and around the active site of the E. coli ODCase (pyrF) by site-directed mutagenesis. The libraries of mutants were selected for function from a multicopy plasmid or by single-copy replacement at the pyrF locus on the E. coli chromosome. Stringent sequence requirements for function were found for the mutants expressed from the chromosomal pyrF locus. Six positions were not tolerant of substitutions and several others accepted very limited substitutions. In contrast, all positions could be substituted to some extent when the library mutants were expressed from a multicopy plasmid. For the conserved quartet of charged residues Lys44-Asp71-Lys73-Asp76, a cysteine substitution was found to provide function at positions 71 and 76. A lower pK(a) for both cysteine mutants supports a mechanism whereby the thiolate group of cysteine substitutes for the negatively charged aspartate side chain. The partial function mutants such as D71C and D76C exhibit reduced catalytic efficiency relative to wild type but nevertheless provide a rate enhancement of 15 orders of magnitude over the uncatalyzed rate indicating the catalytic proficiency of the enzyme is robust and tolerant of mutation.


Assuntos
Escherichia coli/enzimologia , Orotidina-5'-Fosfato Descarboxilase/química , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Catálise , Domínio Catalítico , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Orotidina-5'-Fosfato Descarboxilase/genética , Conformação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência
17.
PLoS One ; 6(4): e18413, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21526164

RESUMO

BACKGROUND: Cyclic GMP-dependent protein kinases (PKGs) are central mediators of the NO-cGMP signaling pathway and phosphorylate downstream substrates that are crucial for regulating smooth muscle tone, platelet activation, nociception and memory formation. As one of the main receptors for cGMP, PKGs mediate most of the effects of cGMP elevating drugs, such as nitric oxide-releasing agents and phosphodiesterase inhibitors which are used for the treatment of angina pectoris and erectile dysfunction, respectively. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the mechanism of cyclic nucleotide binding to PKG by determining crystal structures of the amino-terminal cyclic nucleotide-binding domain (CNBD-A) of human PKG I bound to either cGMP or cAMP. We also determined the structure of CNBD-A in the absence of bound nucleotide. The crystal structures of CNBD-A with bound cAMP or cGMP reveal that cAMP binds in either syn or anti configurations whereas cGMP binds only in a syn configuration, with a conserved threonine residue anchoring both cyclic phosphate and guanine moieties. The structure of CNBD-A in the absence of bound cyclic nucleotide was similar to that of the cyclic nucleotide bound structures. Surprisingly, isothermal titration calorimetry experiments demonstrated that CNBD-A binds both cGMP and cAMP with a relatively high affinity, showing an approximately two-fold preference for cGMP. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that CNBD-A binds cGMP in the syn conformation through its interaction with Thr193 and an unusual cis-peptide forming residues Leu172 and Cys173. Although these studies provide the first structural insights into cyclic nucleotide binding to PKG, our ITC results show only a two-fold preference for cGMP, indicating that other domains are required for the previously reported cyclic nucleotide selectivity.


Assuntos
AMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/química , GMP Cíclico/química , Modelos Moleculares , Sequência de Aminoácidos , Apoproteínas/química , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Proteína Quinase Dependente de GMP Cíclico Tipo I , Humanos , Ligantes , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
18.
Protein Eng ; 16(11): 853-60, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14631075

RESUMO

Hydrolysis of beta-lactam antibiotics by beta-lactamase enzymes is the most common mechanism of bacterial resistance to these agents. Several small-molecule, mechanism-based inhibitors of beta-lactamases such as clavulanic acid are clinically available although resistance to these inhibitors has been increasing in bacterial populations. In addition, these inhibitors act only on class A beta-lactamases. Here we utilized phage display to identify peptides that bind to the class A beta-lactamase, TEM-1. The binding affinity of one of these peptides was further optimized by the synthesis of peptide arrays using SPOT synthesis technology. After two rounds of optimization, a linear 6-mer peptide with the sequence RRGHYY was obtained. A soluble version of this peptide was synthesized and found to inhibit TEM-1 beta-lactamase with a K(i) of 136 micro M. Surprisingly, the peptide inhibits the class A Bacillus anthracis Bla1 beta-lactamase with a K(i) of 42 micro M and the class C beta-lactamase, P99, with a K(i) of 140 micro M, despite the fact that it was not optimized to bind these enzymes. This peptide may be a useful starting point for the design of non-beta-lactam, broad-spectrum peptidomimetic inhibitors of beta-lactamases.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Biblioteca de Peptídeos , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Análise Serial de Proteínas , Inibidores de beta-Lactamases , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ensaio de Imunoadsorção Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Relação Estrutura-Atividade , Termodinâmica , beta-Lactamases/metabolismo
19.
Antimicrob Agents Chemother ; 47(3): 1062-7, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12604542

RESUMO

Carbapenem antibiotics have been used to counteract resistant strains of bacteria harboring beta-lactamases and extended-spectrum beta-lactamases. Four enzymes from the class A group of beta-lactamases, NMC-A, IMI-1, SME-1, and KPC-1, efficiently hydrolyze carbapenem antibiotics. Sequence comparisons and structural information indicate that cysteines at amino acid residues 69 and 238, which are conserved in all four of these enzymes, form a disulfide bond that is unique to these beta-lactamases. To test whether this disulfide bond is required for catalytic activity, the codons for residues Cys69 and Cys238 were randomized individually and simultaneously by PCR-based mutagenesis to create random replacement libraries for these positions. Mutants that were able to confer resistance to ampicillin, imipenem, or cefotaxime were selected from these libraries. The results indicate that positions Cys69 and Cys238 are critical for hydrolysis of all of the antibiotics tested, suggesting that the disulfide bond is generally required for this enzyme to catalyze the hydrolysis of beta-lactam antibiotics.


Assuntos
Resistência beta-Lactâmica/genética , beta-Lactamases/química , Sequência de Aminoácidos , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinas/química , Clonagem Molecular , Códon/genética , Dissulfetos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Biblioteca Gênica , Hidrólise , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Penicilinas/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA