Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3149, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605037

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo
2.
Nat Commun ; 11(1): 5332, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087697

RESUMO

Cytotoxic T lymphocyte (CTL)-based cancer immunotherapies have shown great promise for inducing clinical regressions by targeting tumor-associated antigens (TAA). To expand the TAA landscape of pancreatic ductal adenocarcinoma (PDAC), we performed tandem mass spectrometry analysis of HLA class I-bound peptides from 35 PDAC patient tumors. This identified a shared HLA-A*0101 restricted peptide derived from co-transcriptional activator Vestigial-like 1 (VGLL1) as a putative TAA demonstrating overexpression in multiple tumor types and low or absent expression in essential normal tissues. Here we show that VGLL1-specific CTLs expanded from the blood of a PDAC patient could recognize and kill in an antigen-specific manner a majority of HLA-A*0101 allogeneic tumor cell lines derived not only from PDAC, but also bladder, ovarian, gastric, lung, and basal-like breast cancers. Gene expression profiling reveals VGLL1 as a member of a unique group of cancer-placenta antigens (CPA) that may constitute immunotherapeutic targets for patients with multiple cancer types.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Proteínas de Ligação a DNA/imunologia , Neoplasias Pancreáticas/imunologia , Fatores de Transcrição/imunologia , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica , Antígeno HLA-A1/imunologia , Humanos , Imunoterapia Adotiva , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Placenta/imunologia , Gravidez , Prognóstico , Linfócitos T Citotóxicos/imunologia , Fatores de Transcrição/genética , Neoplasias Pancreáticas
3.
Sci Rep ; 9(1): 18635, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819067

RESUMO

Disseminated tumor cells (DTCs) undergo a dormant state in the distant metastatic site(s) before becoming overt metastatic diseases. In prostate cancer (PCa), bone metastasis can occur years after prostatectomy, suggesting that bone may provide dormancy-inducing factors. To search for these factors, we prepared conditioned media (CM) from calvariae. Using live-cell imaging, we found that Calvarial-CM treatment increased cellular quiescence in C4-2B4 PCa cells. Mass spectrometry analysis of Calvarial-CM identified 132 secreted factors. Western blot and ELISA analyses confirmed the presence of several factors, including DKK3, BMP1, neogenin and vasorin in the Calvarial-CM. qRT-PCR analysis of total calvariae versus isolated osteoblasts showed that DKK3, BMP1, vasorin and neogenin are mainly expressed by osteoblasts, while MIA, LECT1, NGAL and PEDF are expressed by other calvarial cells. Recombinant human DKK3, BMP1, vasorin, neogenin, MIA and NGAL treatment increased cellular quiescence in both C4-2b and C4-2B4 PCa cells. Mechanistically, DKK3, vasorin and neogenin, but not BMP1, increased dormancy through activating the p38MAPK signaling pathway. Consistently, DKK3, vasorin and neogenin failed to induce dormancy in cells expressing dominant-negative p38αMAPK while BMP1 remained active, suggesting that BMP1 uses an alternative dormancy signaling pathway. Thus, bone secretes multiple dormancy-inducing factors that employ distinct signaling pathways to induce DTC dormancy in bone.


Assuntos
Proteína Morfogenética Óssea 1/genética , Neoplasias Ósseas/genética , Meios de Cultivo Condicionados/farmacologia , Neoplasias da Próstata/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Proteínas de Membrana/genética , Metástase Neoplásica , Osteoblastos/metabolismo , Osteoblastos/patologia , Próstata/metabolismo , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Crânio/metabolismo , Crânio/patologia
4.
J Proteome Res ; 16(8): 2709-2728, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28675788

RESUMO

Osteoblasts communicate both with normal cells in the bone marrow and with tumor cells that metastasized to bone. Here we show that osteoblasts release exosomes, we termed osteosomes, which may be a novel mechanism by which osteoblasts communicate with cells in their environment. We have isolated exosomes from undifferentiated/proliferating (D0 osteosomes) and differentiated/mineralizing (D24 osteosomes) primary mouse calvarial osteoblasts. The D0 and D24 osteosomes were found to be vesicles of 130-140 nm by dynamic light scattering analysis. Proteomics profiling using tandem mass spectrometry (LC-MS/MS) identified 206 proteins in D0 osteosomes and 336 in D24 osteosomes. The proteins in osteosomes are mainly derived from the cytoplasm (∼47%) and plasma membrane (∼31%). About 69% of proteins in osteosomes are also found in Vesiclepedia, and these canonical exosomal proteins include tetraspanins and Rab family proteins. We found that there are differences in both protein content and levels in exosomes isolated from undifferentiated and differentiated osteoblasts. Among the proteins that are unique to osteosomes, 169 proteins are present in both D0 and D24 osteosomes, 37 are unique to D0, and 167 are unique to D24. Among those 169 proteins present in both D0 and D24 osteosomes, 10 proteins are likely present at higher levels in D24 than D0 osteosomes based on emPAI ratios of >5. These results suggest that osteosomes released from different cellular state of osteoblasts may mediate distinct functions. Using live-cell imaging, we measured the uptake of PKH26-labeled osteosomes into C4-2B4 and PC3-mm2 prostate cancer cells. In addition, we showed that cadherin-11, a cell adhesion molecule, plays a role in the uptake of osteosomes into PC3-mm2 cells as osteosome uptake was delayed by neutralizing antibody against cadherin-11. Together, our studies suggest that osteosomes could have a unique role in the bone microenvironment under both physiological and pathological conditions.


Assuntos
Calcificação Fisiológica , Proliferação de Células , Exossomos/química , Osteoblastos/patologia , Neoplasias da Próstata/patologia , Proteínas/análise , Animais , Caderinas/fisiologia , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Microambiente Celular/fisiologia , Exossomos/patologia , Humanos , Masculino , Camundongos , Osteoblastos/metabolismo , Neoplasias da Próstata/metabolismo , Proteômica/métodos
5.
Cancer Immunol Res ; 5(8): 618-629, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28630054

RESUMO

Cytotoxic T lymphocyte (CTL)-based immunotherapies have had remarkable success at generating objective clinical responses in patients with advanced metastatic melanoma. Although the melanocyte differentiation antigens (MDA) MART-1, PMEL, and tyrosinase were among the first melanoma tumor-associated antigens identified and targeted with immunotherapy, expression within normal melanocytes of the eye and inner ear can elicit serious autoimmune side effects, thus limiting their clinical potential as CTL targets. Using a tandem mass spectrometry (MS) approach to analyze the immunopeptidomes of 55 melanoma patient-derived cell lines, we identified a number of shared HLA class I-bound peptides derived from the melanocyte-specific transporter protein SLC45A2. Antigen-specific CTLs generated against HLA-A*0201- and HLA-A*2402-restricted SLC45A2 peptides effectively killed a majority of HLA-matched cutaneous, uveal, and mucosal melanoma cell lines tested (18/25). CTLs specific for SLC45A2 showed significantly reduced recognition of HLA-matched primary melanocytes that were, conversely, robustly killed by MART1- and PMEL-specific T cells. Transcriptome analysis revealed that SLC45A2 mRNA expression in normal melanocytes was less than 2% that of other MDAs, therefore providing a more favorable melanoma-to-melanocyte expression ratio. Expression of SLC45A2 and CTL sensitivity could be further upregulated in BRAF(V600E)-mutant melanoma cells upon treatment with BRAF or MEK inhibitors, similarly to other MDAs. Taken together, our study demonstrates the feasibility of using tandem MS as a means of discovering shared immunogenic tumor-associated epitopes and identifies SLC45A2 as a promising immunotherapeutic target for melanoma with high tumor selectivity and reduced potential for autoimmune toxicity. Cancer Immunol Res; 5(8); 618-29. ©2017 AACR.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia , Melanoma/terapia , Proteínas de Membrana Transportadoras/imunologia , Proteínas Proto-Oncogênicas B-raf/genética , Linfócitos T Citotóxicos/imunologia , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/genética , Citotoxicidade Imunológica , Epitopos/imunologia , Antígeno HLA-A2/imunologia , Antígeno HLA-A24/imunologia , Humanos , Antígeno MART-1/imunologia , Melanócitos/imunologia , Melanoma/imunologia , Melanoma/patologia , Proteínas de Membrana Transportadoras/genética , Peptídeos/genética , Peptídeos/imunologia , Proteínas Proto-Oncogênicas B-raf/imunologia , Espectrometria de Massas em Tandem , Transcriptoma/genética , Antígeno gp100 de Melanoma/imunologia
6.
Cancer Chemother Pharmacol ; 59(5): 697-702, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17009030

RESUMO

We previously reported (UroOncology 1:165, 2001) cross-resistance and collateral-sensitivity to 2-chlorodeoxyadenosine (CldAdo) and fludarabine (FaraA), respectively, in a human renal cell carcinoma selected for resistance to 2'-deoxytubercidin (Caki-dTub). Insofar that these drugs generally demonstrate cross resistance rather than collateral sensitivity, we further examined the bases for this phenomenon. Both CldAdo and FaraA induce apoptosis, as the triphosphates, via binding to Apaf-1. In the presence of cytochrome c, this binding leads to activation of procaspase 9 to active caspase 9 that induces apoptosis through its activation of caspase 3. CldAdo and FaraA induced caspase 3 activities in wild type and Caki-dTub cell lines in a dose-dependent manner that paralleled the cross-resistance (CldAdo, 200-fold) or collateral sensitivity (FaraA, 20-fold) with regard to cell viability. The activation of caspase 3 was inhibited by the caspase 9 inhibitor, Z-LEHD-FMK, suggesting that both drugs act via the same pathway. By differential display and direct enzyme analysis, dihydrodiol dehydrogenase (DDH) was observed to be profoundly underexpressed in the Caki-dTub compared to wild-type Caki-1 cells. Stable transfection of the Caki-dTub cells with a vector encoding the enzyme led to partial reversal of the resistance to CldAdo. Resistance to cisplatin has recently been ascribed to overexpression of DDH in a human ovarian carcinoma cell line (Deng et al. in J Biol Chem 227:15035, 2002). It is tempting to speculate a mutation in the Apaf-1 nucleotide binding site that reduces (CldAdo) or increases (FaraA) toxicity in the Caki-dTub cells; however, the recent finding by others in a human ovarian carcinoma cell line suggests that DDH expression mediates the cross-resistance and perhaps, collateral-sensitivity.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/enzimologia , Oxirredutases/metabolismo , Carcinoma de Células Renais/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cladribina/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Neoplasias Renais/genética , Oxirredutases/genética , Transfecção , Vidarabina/análogos & derivados , Vidarabina/farmacologia
7.
Cancer Chemother Pharmacol ; 50(1): 65-70, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12111114

RESUMO

PURPOSE: Suicide gene therapy offers the potential to increase the selective toxicity of antitumor agents by intratumoral expression of exogenous enzymes that convert nontoxic prodrugs to toxic products. The use of herpes simplex virus thymidine kinase with ganciclovir, and E. coli cytosine deaminase with 5-fluorocytosine are well-known examples of this approach. The purpose of this study was to investigate a novel suicide gene therapy using E. coli beta-galactosidase (beta-gal) as the prodrug-activating enzyme. Advantages of this approach include: (1) the ability to use prodrugs that are cleaved by beta-gal to agents that are known to possess activity against human solid tumors, and (2) the extensive experience gained with targeting beta-gal to specific tumors in experimental animals and in humans. METHODS: Two different structural types of anthracycline prodrugs, N-[4"-(beta- D-galactopyranosyl)-3"-nitrobenzyloxycarbonyl]daunomycin (Daun02) and N-[(4" R,S)-4"-ethoxy-4"-(1"'- O-beta- D-galactopyranosyl)butyl]daunorubicin (gal-DNC4) were investigated. The prodrugs were evaluated as substrates for beta-gal. Cytotoxicity studies of Daun02 were conducted against a murine tumor (Panc02), two human breast tumors (MCF-7 and T47D), and three human prostate tumors (PC3, DU145 and LNCAP) that had been transduced to express beta-gal. Antitumor studies of Daun02 were conducted against mouse tumor Panc02 xenografts implanted subcutaneously. RESULTS: Daun02 was a good substrate for beta-gal. By comparison, gal-DCN4 was a poor substrate. Except for PC3, the beta-gal-transduced tumors showed 3- to 60-fold increased sensitivity to Daun02 compared with mock-transduced control cells. Daunomycin was formed from Daun02 in tissue culture medium containing beta-gal-transduced cell lines but was not observed in the medium from mock-transduced controls. In vivo therapeutic studies of Daun02 against the Panc02 tumor in athymic mice showed no significant inhibition of tumor growth. Pharmacokinetic studies showed limited distribution of the prodrug beyond the vascular space. CONCLUSIONS: E. coli beta-gal may be useful as a prodrug-activating enzyme in suicide gene therapy and has the potential to increase the selective toxicity of conventional antitumor agents. Although this approach worked well against tumor cells in vitro, it was not effective against a xenograft model in vivo, apparently because of poor drug-tissue distribution.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Escherichia coli/enzimologia , Terapia Genética/métodos , Neoplasias Experimentais/terapia , Pró-Fármacos/uso terapêutico , beta-Galactosidase/metabolismo , Animais , Daunorrubicina/uso terapêutico , Feminino , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Transdução Genética , Transfecção , Células Tumorais Cultivadas/efeitos dos fármacos , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA