Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39061813

RESUMO

This study proposes a bile duct stent based on indirect 3D printing technology. Four ratio materials were synthesized from lactic acid (LA) and glycolide (GA) monomers by melt polymerization: PLA, PLGA (70:30), PLGA (50:50), and PLGA (30:70). The four kinds of material powders were preliminarily degraded, and the appearance was observed with an optical microscope (OM) and a camera. The weight and appearance of the four materials changed significantly after four weeks of degradation, which met the conditions for materials to be degraded within 4-6 weeks. Among them, PLGA (50:50) lost the most-the weight dropped to 13.4%. A stent with an outer diameter of 10 mm and an inner diameter of 8 mm was successfully manufactured by indirect 3D printing technology, demonstrating the potential of our research. Then, the degradation experiment was carried out on a cylindrical stent with a diameter of 6 mm and a height of 3 mm. The weight loss of the sample was less than that of the powder degradation, and the weight loss of PLGA (50:50) was the largest-the weight dropped to 79.6%. The nano-indenter system measured the mechanical properties of materials. Finally, human liver cancer cells Hep-3B were used to conduct in vitro cytotoxicity tests on the scaffolds to test the biocompatibility of the materials. A bile duct stent meeting commercial size requirements has been developed, instilling confidence in the potential of our research for future medical applications.

3.
Int J Biol Macromol ; 245: 125510, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37353120

RESUMO

The objectives were to identify the functional domains of a potential oncoprotein, cell migration inducing hyaluronidase 2 (CEMIP2), evaluate its expression levels and roles in colorectal cancer (CRC), and develop an aptamer-based nanoparticle for targeted therapy. Data mining on TCGA identified that CEMIP2 might play oncogenic roles in CRC. In a local cohort, CEMIP2 mRNA levels significantly stepwise increase in CRC patients with higher stages, and high CEMIP2 confers worse disease-free survival. In addition, CEMIP2 mRNA levels significantly correlated to hyaluronan levels in sera from CRC patients. Deletion mapping identified that CEMIP2 containing G8 and PANDER-like domains preserved hyaluronidase activity and oncogenic roles, including cell proliferation, anchorage-independent cell growth, cell migration and invasion, and human umbilical vein endothelial cell (HUVEC) tube formation in CRC-derived cells. A customized monoclonal mouse anti-human CEMIP2 antibody probing the PANDER-like domain (anti-289307) counteracted CEMIP2-mediated carcinogenesis in vitro. Cell-SELEX pinpointed an aptamer, aptCEMIP2(101), specifically interacted with the full-length CEMIP2, potentially involving its 3D structure. Treatments with aptCEMIP2(101) significantly reduced CEMIP2-mediated tumorigenesis in vitro. Mesoporous silica nanoparticles (MSN) carrying atpCEMIP2(101) and Dox were fabricated. Dox@MSN, MSN-aptCEMIP2(101), and Dox@MSN-aptCEMIP2(101) significantly suppressed tumorigenesis in vitro compared to the Mock, while Dox@MSN-aptCEMIP2(101) showed substantially higher effects compared to Dox@MSN and MSN-aptCEMIP2(101) in CRC-derived cells. Our study identified a novel oncogene and developed an effective aptamer-based targeted therapeutic strategy.


Assuntos
Neoplasias Colorretais , Nanopartículas , Humanos , Camundongos , Animais , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Hialuronoglucosaminidase , Doxorrubicina/química , Oligonucleotídeos , Nanopartículas/química , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Dióxido de Silício/química , Porosidade , Citocinas
4.
Cell Oncol (Dordr) ; 46(4): 933-951, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36920729

RESUMO

PURPOSE: Urothelial carcinoma (UC) is a common disease in developed counties. This study aimed to identify autocrine roles and signaling pathways of gremlin 1, DAN family BMP antagonist (GREM1), which inhibits tumor growth and epithelial-mesenchymal transition (EMT) in UC. METHODS: Systematic in vitro and in vivo studies using genetic engineering, different urinary bladder urothelial carcinoma (UBUC)-derived cell lines, and mouse models were performed, respectively. Further, primary upper tract urothelial carcinoma (UTUC) and UBUC specimens were evaluated by immunohistochemistry. RESULTS: GREM1 protein levels conferred better disease-specific and metastasis-free survival rates and played an independent prognostic factor in UTUC and UBUC. Hypermethylation is the primary cause of low GREM1 levels. In different UBUC-derived cell lines, the autocrine/secreted and glycosylated GREM1 interacted with transforming growth factor beta 1 (TGFB1) and inhibited TGFß/BMP/SMAD signaling and myosin light chain 9 (MYL9) transactivation, subsequently cell proliferation and epithelial-mesenchymal transition (EMT). Secreted and glycosylated GREM1 also suppressed tumor growth, metastasis, and MYL9 levels in the mouse model. Instead, cytosolic GREM1 promoted cell proliferation and EMT by activating the tumor necrosis factor (TNF)/AKT/nuclear factor kappa B (NFκB) axis. CONCLUSIONS: Clinical associations, animal models, and in vitro indications provided solid evidence to show that the epithelial autocrine GREM1 is a novel tumor suppressor in UCs. The glycosylated-GREM1 hampered cell proliferation, migration, invasion, and in vitro angiogenesis through interaction with TGFB1 to inactivate TGFß/BMP/SMAD-mediated EMT in an autocrine manner.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/genética , Ativação Transcricional
5.
Cancers (Basel) ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831685

RESUMO

In today's high-order health examination, imaging examination accounts for a large proportion. Computed tomography (CT), which can detect the whole body, uses X-rays to penetrate the human body to obtain images. Its presentation is a high-resolution black-and-white image composed of gray scales. It is expected to assist doctors in making judgments through deep learning based on the image recognition technology of artificial intelligence. It used CT images to identify the bladder and lesions and then segmented them in the images. The images can achieve high accuracy without using a developer. In this study, the U-Net neural network, commonly used in the medical field, was used to extend the encoder position in combination with the ResBlock in ResNet and the Dense Block in DenseNet, so that the training could maintain the training parameters while reducing the overall identification operation time. The decoder could be used in combination with Attention Gates to suppress the irrelevant areas of the image while paying attention to significant features. Combined with the above algorithm, we proposed a Residual-Dense Attention (RDA) U-Net model, which was used to identify organs and lesions from CT images of abdominal scans. The accuracy (ACC) of using this model for the bladder and its lesions was 96% and 93%, respectively. The values of Intersection over Union (IoU) were 0.9505 and 0.8024, respectively. Average Hausdorff distance (AVGDIST) was as low as 0.02 and 0.12, respectively, and the overall training time was reduced by up to 44% compared with other convolution neural networks.

6.
Diagnostics (Basel) ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36010265

RESUMO

The research was based on the image recognition technology of artificial intelligence, which is expected to assist physicians in making correct decisions through deep learning. The liver dataset used in this study was derived from the open source website (LiTS) and the data provided by the Kaohsiung Chang Gung Memorial Hospital. CT images were used for organ recognition and lesion segmentation; the proposed Residual-Dense-Attention (RDA) U-Net can achieve high accuracy without the use of contrast. In this study, U-Net neural network was used to combine ResBlock in ResNet with Dense Block in DenseNet in the coder part, allowing the training to maintain the parameters while reducing the overall recognition computation time. The decoder was equipped with Attention Gates to suppress the irrelevant areas of the image while focusing on the significant features. The RDA model was used to identify and segment liver organs and lesions from CT images of the abdominal cavity, and excellent segmentation was achieved for the liver located on the left side, right side, near the heart, and near the lower abdomen with other organs. Better recognition was also achieved for large, small, and single and multiple lesions. The study was able to reduce the overall computation time by about 28% compared to other convolutions, and the accuracy of liver and lesion segmentation reached 96% and 94.8%, with IoU values of 89.5% and 87%, and AVGDIST of 0.28 and 0.80, respectively.

7.
Diagnostics (Basel) ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34573941

RESUMO

Due to the fact that previous studies have rarely investigated the recognition rate discrepancy and pathology data error when applied to different databases, the purpose of this study is to investigate the improvement of recognition rate via deep learning-based liver lesion segmentation with the incorporation of hospital data. The recognition model used in this study is H-DenseUNet, which is applied to the segmentation of the liver and lesions, and a mixture of 2D/3D Hybrid-DenseUNet is used to reduce the recognition time and system memory requirements. Differences in recognition results were determined by comparing the training files of the standard LiTS competition data set with the training set after mixing in an additional 30 patients. The average error value of 9.6% was obtained by comparing the data discrepancy between the actual pathology data and the pathology data after the analysis of the identified images imported from Kaohsiung Chang Gung Memorial Hospital. The average error rate of the recognition output after mixing the LiTS database with hospital data for training was 1%. In the recognition part, the Dice coefficient was 0.52 after training 50 epochs using the standard LiTS database, while the Dice coefficient was increased to 0.61 after adding 30 hospital data to the training. After importing 3D Slice and ITK-Snap software, a 3D image of the lesion and liver segmentation can be developed. It is hoped that this method could be used to stimulate more research in addition to the general public standard database in the future, as well as to study the applicability of hospital data and improve the generality of the database.

8.
Pharmaceutics ; 13(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575492

RESUMO

The objective of this study aimed to develop biodegradable calcium alginate microspheres carrying doxorubicin (Dox) at the micrometer-scale for sustained release and the capacity of pH regulatory for transarterial chemoembolization. Ultrasonic atomization and CaCl2 cross-linking technologies were used to prepare the microspheres. A 4-by-5 experiment was first designed to identify imperative parameters. The concentration of CaCl2 and the flow rate of the pump were found to be critical to generate microspheres with a constant volume median diameter (~39 µm) across five groups with different alginate: NaHCO3 ratios using each corresponding flow rate. In each group, the encapsulation efficiency was positively correlated to the Dox-loading %. Fourier-transform infrared spectroscopy showed that NaHCO3 and Dox were step-by-step incorporated into the calcium alginate microspheres successfully. Microspheres containing alginate: NaHCO3 = 1 exhibited rough and porous surfaces, high Young's modulus, and hardness. In each group with the same alginate: NaHCO3 ratio, the swelling rates of microspheres were higher in PBS containing 10% FBS compared to those in PBS alone. Microspheres with relatively high NaHCO3 concentrations in PBS containing 10% FBS maintained better physiological pH and higher accumulated Dox release ratios. In two distinct hepatocellular carcinoma-derived cell lines, treatments with microspheres carrying Dox demonstrated that the cell viabilities decreased in groups with relatively high NaHCO3 ratios in time- and dose-dependent manners. Our results suggested that biodegradable alginate microspheres containing relatively high NaHCO3 concentrations improved the cytotoxicity effects in vitro.

9.
Cell Oncol (Dordr) ; 44(5): 1133-1150, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339014

RESUMO

PURPOSE: Urinary bladder urothelial carcinoma (UBUC) is a common malignant disease, and its high recurrence rates impose a heavy clinical burden. The objective of this study was to identify signaling pathways downstream of epithelial membrane protein 2 (EMP2), which induces cytostasis and apoptosis in UBUC. METHODS: A series of in vitro and in vivo assays using different UBUC-derived cell lines and mouse xenograft models were performed, respectively. In addition, primary UBUC specimens were evaluated by immunohistochemistry. RESULTS: Exogenous expression of EMP2 in J82 UBUC cells significantly decreased DNA replication and altered the expression levels of several TGFß signaling-related proteins. EMP2 knockdown in BFTC905 UBUC cells resulted in opposite effects. EMP2-dysregulated cell cycle progression was found to be mediated by the TGFß/TGFBR1/SP1 family member SMAD. EMP2 or purinergic receptor P2X7 (P2RX7) gene expression upregulation induced apoptosis via both intrinsic and extrinsic pathways. In 242 UBUC patient samples, P2RX7 protein levels were found to be significantly and positively correlated with EMP2 protein levels. Low P2RX7 levels conferred poor disease-specific and metastasis-free survival rates, and significantly decreased apoptotic cell rates. EMP2 was found to physically interact with P2RX7. In the presence of a P2RX7 agonist, BzATP, overexpression of both EMP2 and P2RX7 significantly increased apoptotic cell rates compared to overexpression of EMP2 or P2RX7 alone. CONCLUSIONS: EMP2 induces cytostasis via the TGFß/SMAD/SP1 axis and recruits P2RX7 to enhance apoptosis in UBUC. Our data provide new insights that may be employed for the design of UBUC targeting therapies.


Assuntos
Apoptose/genética , Carcinoma de Células de Transição/genética , Proliferação de Células/genética , Glicoproteínas de Membrana/genética , Proteínas/genética , Receptores Purinérgicos P2X7/genética , Neoplasias da Bexiga Urinária/genética , Animais , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Transplante Heterólogo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
10.
Membranes (Basel) ; 11(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803319

RESUMO

Environmental and economic concerns are driving the demand for electric vehicles. However, their development for mass transportation hinges largely on improvements in the separators in lithium-ion batteries (LIBs), the preferred energy source. In this study, innovative separators for LIBs were fabricated by near-field electrospinning (NFES) and the sol-gel method. Using NFES, poly (vinylidene fluoride) (PVDF) fibers were fabricated. Then, PVDF membranes with pores of 220 nm and 450 nm were sandwiched between a monolayer and bilayer of the electrospun fibers. Nanoceramic material with organic resin, formed by the sol-gel method, was coated onto A4 paper, rice paper, nonwoven fabric, and carbon synthetic fabric. Properties of these separators were compared with those of a commercial polypropylene (PP) separator using a scanning electron microscope (SEM), microtensile testing, differential scanning calorimetry (DSC), ion-conductivity measurement, cyclic voltammetry (CV), and charge-discharge cycling. The results indicate that the 220 nm PVDF membrane sandwiched between a bilayer of electrospun fibers had excellent ionic conductivity (~0.57 mS/cm), a porosity of ~70%, an endothermic peak of ~175 °C, better specific capacitance (~356 mAh/g), a higher melting temperature (~160 °C), and a stable cycle performance. The sol-gel coated nonwoven fabric had ionic conductivity, porosity, and specific capacitance of ~0.96 mS/cm., ~64%, and ~220 mAh/g, respectively, and excellent thermal stability despite having a lower specific capacitance (65% of PP separator) and no peak below 270 °C. The present study provides a significant step toward the innovation of materials and processes for fabricating LIB separators.

11.
Micromachines (Basel) ; 12(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804190

RESUMO

Intervertebral fusion surgery for spinal trauma, degeneration, and deformity correction is a major vertebral reconstruction operation. For most cages, the stiffness of the cage is high enough to cause stress concentration, leading to a stress shielding effect between the vertebral bones and the cages. The stress shielding effect affects the outcome after the reconstruction surgery, easily causing damage and leading to a higher risk of reoperation. A porous structure for the spinal fusion cage can effectively reduce the stiffness to obtain more comparative strength for the surrounding tissue. In this study, an intervertebral cage with a porous gradation structure was designed for Ti64ELI alloy powders bonded by the selective laser melting (SLM) process. The medical imaging software InVesalius and 3D surface reconstruction software Geomagic Studio 12 (Raindrop Geomagic Inc., Morrisville, NC, USA) were utilized to establish the vertebra model, and ANSYS Workbench 16 (Ansys Inc., Canonsburg, PA, USA) simulation software was used to simulate the stress and strain of the motions including vertical body-weighted compression, flexion, extension, lateral bending, and rotation. The intervertebral cage with a hollow cylinder had porosity values of 80-70-60-70-80% (from center to both top side and bottom side) and had porosity values of 60-70-80 (from outside to inside). In addition, according to the contact areas between the vertebras and cages, the shape of the cages can be custom-designed. The cages underwent fatigue tests by following ASTM F2077-17. Then, mechanical property simulations of the cages were conducted for a comparison with the commercially available cages from three companies: Zimmer (Zimmer Biomet Holdings, Inc., Warsaw, IN, USA), Ulrich (Germany), and B. Braun (Germany). The results show that the stress and strain distribution of the cages are consistent with the ones of human bone, and show a uniform stress distribution, which can reduce stress concentration.

12.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478005

RESUMO

The objective was to investigate the anti-cancer effects and underlying molecular mechanisms of cytostasis which were activated by an anti-microtubule drug, ABT-751, in two urinary bladder urothelial carcinoma (UBUC)-derived cell lines, BFTC905 and J82, with distinct genetic backgrounds. A series of in vitro assays demonstrated that ABT-751 induced G2/M cell cycle arrest, decreased cell number in the S phase of the cell cycle and suppressed colony formation/independent cell growth, accompanied with alterations of the protein levels of several cell cycle regulators. In addition, ABT-751 treatment significantly hurdled cell migration and invasion along with the regulation of epithelial-mesenchymal transition-related proteins. ABT-751 triggered autophagy and apoptosis, downregulated the mechanistic target of rapamycin kinase (MTOR) and upregulated several pro-apoptotic proteins that are involved in extrinsic and intrinsic apoptotic pathways. Inhibition of autophagosome and autolysosome enhanced apoptosis was also observed. Through the inhibition of the NFκB signaling pathway, ABT-751 suppressed S-phase kinase associated protein 2 (SKP2) transcription and subsequent translation by downregulation of active/phospho-AKT serine/threonine kinase 1 (AKT1), component of inhibitor of nuclear factor kappa B kinase complex (CHUK), NFKB inhibitor alpha (NFKBIA), nuclear RELA proto-oncogene, NFκB subunit (RELA) and maintained a strong interaction between NFKBIA and RELA to prevent RELA nuclear translocation for SKP2 transcription. ABT-751 downregulated stable/phospho-SKP2 including pSKP2(S64) and pSKP2(S72), which targeted cyclin-dependent kinase inhibitors for degradation through the inactivation of AKT. Our results suggested that ABT-751 may act as an anti-cancer drug by inhibiting cell migration, invasion yet inducing cell cycle arrest, autophagy and apoptosis in distinct UBUC-derived cells. Particularly, the upstream molecular mechanism of its anticancer effects was identified as ABT-751-induced cytostasis through the inhibition of SKP2 at both transcriptional and post-translational levels to stabilize cyclin dependent kinase inhibitor 1A (CDKN1A) and CDKN1B proteins.


Assuntos
Carcinoma/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteínas Quinases Associadas a Fase S/genética , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma/genética , Carcinoma/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinase/genética , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Urotélio/efeitos dos fármacos , Urotélio/patologia
13.
Diagnostics (Basel) ; 11(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374672

RESUMO

Cancer is one of the common diseases. Quantitative biomarkers extracted from standard-of-care computed tomography (CT) scan can create a robust clinical decision tool for the diagnosis of hepatocellular carcinoma (HCC). According to the current clinical methods, the situation usually accounts for high expenditure of time and resources. To improve the current clinical diagnosis and therapeutic procedure, this paper proposes a deep learning-based approach, called Successive Encoder-Decoder (SED), to assist in the automatic interpretation of liver lesion/tumor segmentation through CT images. The SED framework consists of two different encoder-decoder networks connected in series. The first network aims to remove unwanted voxels and organs and to extract liver locations from CT images. The second network uses the results of the first network to further segment the lesions. For practical purpose, the predicted lesions on individual CTs were extracted and reconstructed on 3D images. The experiments conducted on 4300 CT images and LiTS dataset demonstrate that the liver segmentation and the tumor prediction achieved 0.92 and 0.75 in Dice score, respectively, by as-proposed SED method.

14.
J Nanosci Nanotechnol ; 20(8): 5162-5174, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126717

RESUMO

This study aimed to develop emulsification assisted with ultrasonic atomization (EUA) to make embolic biodegradable poly(caprolactone) (PCL) spherical-microcarriers with uniform particle size for mass production which was used to cure hepatocellular carcinoma, because this kind of embolic drugs is expensive at the current market due to their complex manufacturing process. The embolic spherical-microcarriers with sustained-releasing therapeutic agents can shrink an unresectable tumor into a respectable size. Through high frequency vibrating surface on the ultrasonic atomizer nozzle, the thin liquid film for PCL oil-phase solution was broken into the uniform PCL microdroplets (particle sizes are from 20 to 55 µm) with less medicine loss. To determine the optimal parameters to make PCL microcarriers, the ultrasonic module parameters including the concentration of PCL solution, vibrating amplitude of atomizer, feeding rate of PCL oil-phase solution and collection distance on the particle size of microdroplets were analyzed. Besides, a vertical circulation flow field of aqueous-phase poly(vinyl alcohol) (PVA) solution was created to enhance the separation of the microdroplets and increase the production of the PCL microcarriers, and about 8~11 wt% of PVA solution with high stable dispersion property was used to effectively improve the yield rate of PCL spherical-microcarriers (89.8~98.2 wt%). The final particle size of PCL microcarriers was ca. 5-18 µm, indicating an about 25-50% volume shrinkage from microdroplets to solid spherical-microcarriers.


Assuntos
Neoplasias Hepáticas , Poliésteres , Humanos , Microesferas , Tamanho da Partícula
15.
Theranostics ; 10(2): 707-724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903146

RESUMO

Muscle-invasive urinary bladder urothelial carcinoma (UBUC) is a lethal disease for which effective prognostic markers and potential therapy targets are still lacking. Previous array comparative genomic hybridization identified that 3q27 is frequently amplified in muscle-invasive UBUCs, one candidate proto-oncogene, B-cell CLL/lymphoma 6 (BCL6), mapped to this region. We therefore aimed to explore its downstream targets and physiological roles in UBUC progression. Methods: Specimens from UBUC patients, NOD/SCID mice and several UBUC-derived cell lines were used to perform quantitative RT-PCR, fluorescence in situ hybridization immunohistochemistry, xenograft, gene stable overexpression/knockdown and a series of in vitro experiments. Results: Amplification of the BCL6 gene lead to upregulation of BCL6 mRNA and protein levels in a substantial set of advanced UBUCs. High BCL6 protein level significantly predicted poor disease-specific and metastasis-free survivals. Knockdown of the BCL6 gene in J82 cells inhibited tumor growth and enhanced apoptosis in the NOD/SCID xenograft model. In vitro experiments demonstrated that BCL6 inhibited cytostasis, induced cell migration, invasion along with alteration of the expression levels of several related regulators. At molecular level, BCL6 inhibited forkhead box O3 (FOXO3) transcription, subsequent translation and upregulation of phosphorylated/inactive FOXO3 through phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) and/or epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 1/2 (MAP2K1/2) signaling pathway(s). Two BCL6 binding sites on the proximal promoter region of the FOXO3 gene were confirmed. Conclusion: Overexpression of BCL6 served a poor prognostic factor in UBUC patients. In vivo and in vitro studies suggested that BCL6 functions as an oncogene through direct transrepression of the FOXO3 gene, downregulation and phosphorylation of the FOXO3 protein.


Assuntos
Adenocarcinoma/patologia , Proteína Forkhead Box O3/metabolismo , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-6/genética , Neoplasias da Bexiga Urinária/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Proteína Forkhead Box O3/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Taxa de Sobrevida , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Curr Pharm Des ; 25(24): 2637-2649, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603057

RESUMO

BACKGROUND: Multimodal imaging plays an important role in the diagnosis of brain disorders. Neurological disorders need to be diagnosed at an early stage for their effective treatment as later, it is very difficult to treat them. If possible, diagnosing at an early stage can be much helpful in curing the disease with less harm to the body. There is a need for advanced and multimodal imaging techniques for the same. This paper provides an overview of conventional as well as modern imaging techniques for brain diseases, specifically for tumor imaging. In this paper, different imaging modalities are discussed for tumor detection in the brain along with their advantages and disadvantages. Conjugation of two and more than two modalities provides more accurate information rather than a single modality. They can monitor and differentiate the cellular processes of normal and diseased condition with more clarity. The advent of molecular imaging, including reporter gene imaging, has opened the door of more advanced noninvasive detection of brain tumors. Due to specific optical properties, semiconducting polymer-based nanoparticles also play a pivotal role in imaging tumors. OBJECTIVE: The objective of this paper is to review nanoparticles-mediated brain imaging and disease prognosis by conventional as well as modern modal imaging techniques. CONCLUSION: We reviewed in detail various medical imaging techniques. This paper covers recent developments in detail and elaborates a possible research aspect for the readers in the field.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Molecular/tendências , Nanopartículas , Neuroimagem/tendências , Humanos , Prognóstico
17.
APMIS ; 127(4): 170-180, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30803053

RESUMO

The objective of this study was to examine the expression level of cytochrome P450 4B1 (CYP4B1) protein and its clinical significance in specimens from patients with urothelial carcinomas (UC) including upper tract urothelial carcinoma (UTUC, n = 340) and urinary bladder urothelial carcinoma (UBUC, n = 295). Data mining on public domains identified five potential candidate transcripts which were downregulated in advanced UBUCs, indicating that it might implicate in UC progression. Immunohistochemistry was performed to analyze the CYP4B1 protein levels on 635 tissues from UC patients retrospectively. Immunoexpression of CYP4B1 was further estimated using the H-score method. Correlations between CYP4B1 H-score and important clinicopathological factors, as well as the significance of CYP4B1 expression level for disease-specific and metastasis-free survivals were evaluated. In UTUCs and UBUCs, 118 (34.7%) and 92 (31.2%) patients, respectively, were identified to be of CYP4B1 downregulation. The CYP4B1 expression level was found to be associated with several clinicopathological factors and patient survivals. Downregulation of CYP4B1 protein was correlated to advanced primary tumor (p < 0.001), nodal metastasis (p < 0.001), high histological grade (p = 0.001), vascular invasion (p < 0.001), perineural invasion (p = 0.017) and mitotic rate (p = 0.036) in UTUCs and/or UBUCs. Low CYP4B1 protein level independently predicted inferior disease-specific (p = 0.009; p < 0.001) and metastasis-free (p = 0.035; p < 0.001) survivals in UTUC and UBUC patients. Our findings showed that downregulation of CYP4B1 protein level is an independent unfavorable prognosticator. Loss of the CYP4B1 gene expression may play an important role in UC progression.


Assuntos
Hidrocarboneto de Aril Hidroxilases/análise , Carcinoma/diagnóstico , Carcinoma/patologia , Regulação para Baixo , Sistema Urinário/patologia , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
18.
RSC Adv ; 9(34): 19261-19270, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35519377

RESUMO

The epidermal growth factor receptor, also known as EGFR, is a tyrosine kinase receptor commonly found in epithelial tumors. As part of the first target for cancer treatment, EGFR has been the subject of intense research for more than 20 years; as a result, there are a number of anti-EGFR agents currently available. More recently, with our basic understanding of mechanisms related to receptor activation and function, both the secondary and primary forms of EGFR somatic mutations have led to the discovery of new anti-EGFR agents aimed at providing new insights into the clinical targeting of this receptor and possibly acting as an ideal model for developing strategies to target other types of receptors. In this study, we use genomic pattern to prove that EGFR is most frequently altered in GBM, glioma and astrocytoma; and analysed the prognostic potentiality of EGFR in glioma, which is a major type of brain tumor. Further we proposed a new screening technique for EGFR inhibitors by employing an in silico optimized deep neural network approach. This method was applied to screen a nanoparticle (NP) library, and it was concluded that gold NPs (AuNPs) induced significant inhibition of EGFR compared with other selected NPs. These findings were further analyzed by molecular docking, systems biology, time course simulations and synthetic biology (biological circuits), revealing that anti-EGFR-iRGD and AuNP showed potential inhibition against tumors caused by EGFR.

19.
J Cell Physiol ; 234(6): 9551-9563, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30367486

RESUMO

The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel antimicrotubule drug, ABT-751, in a tumor protein p53 ( TP53)-deficient hepatocellular carcinoma-derived Hep-3B cells. A series of in vitro assays indicated that ABT-751 caused the disruption of the mitotic spindle structure, collapse of mitochondrial membrane potential, generation of reactive oxygen species, DNA damage, G 2 /M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Hep-3B cells accompanied by alteration of the expression levels of several DNA damage checkpoint proteins and cell cycle regulators. Subsequently, ABT-751 triggered apoptosis along with markedly upregulated several proapoptotic proteins involving in extrinsic, intrinsic, and caspase-mediated apoptotic pathways. A pan-caspase inhibitor suppressed ABT-751-induced apoptosis. ABT-751 also induced autophagy soon after the occurrence of apoptosis through the suppression of AKT serine/threonine kinase/mechanistic target of rapamycin signaling pathway. Exogenous expression of the TP53 gene significantly incurred both apoptosis and autophagy in Hep-3B cells. Pharmacological inhibition of autophagosome (early autophagy) but not autolysosome (late autophagy) enhanced ABT-751-induced apoptosis in TP53-deficient Hep-3B cells. Our study provided a new strategy to augment ABT-751-induced apoptosis in TP53-deficient cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagossomos/metabolismo , Lisossomos/metabolismo , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/deficiência , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Humanos , Lisossomos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/química , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética
20.
Curr Pharm Des ; 24(32): 3758-3766, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30417777

RESUMO

BACKGROUND: Cancer is one of the most debilitating diseases worldwide; even though advances in molecular and cellular biology have contributed to the decline of mortality associated with cancer, the procedure of drug discovery and development of cancer are time-consuming and expensive. However, with computer-aided drug discovery (CADD) techniques, pharmaceutical firms can save production costs and reduce the time of introducing effective anticancer drugs for clinical trials. CADD strategies like structure-based drug designing, ligandbased drug designing, and combined structure-based and ligand-based approaches also have the advantage of identifying target sites and discovering active compounds with high affinity for the target sites. In this article, research carried out on cancer biology aspect of the computational approaches in drug discovery technology have been reviewed. OBJECTIVE: The main objective of the study is to identify the potential causes and the development of the cancer. In addition to this, its recovery has been discussed briefly. CONCLUSION: Our findings indicate that only a few studies have been carried out regarding this area. Hence, it is recommended that further researches should be conducted on the computational methods for identifying candidate drugs for breast, pancreatic, colon, prostate, and other types of cancer.


Assuntos
Antineoplásicos/uso terapêutico , Desenho Assistido por Computador , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Humanos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA