Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adipocyte ; 13(1): 2365211, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38858810

RESUMO

microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.


Assuntos
Adipogenia , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , MicroRNAs , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Suínos , Adipogenia/genética , Células Cultivadas , Transdução de Sinais , Adipócitos/citologia , Adipócitos/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo
2.
Adv Sci (Weinh) ; 10(29): e2302298, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37551034

RESUMO

Sepsis-induced muscle atrophy often increases morbidity and mortality in intensive care unit (ICU) patients, yet neither therapeutic target nor optimal animal model is available for this disease. Here, by modifying the surgical strategy of cecal ligation and puncture (CLP), a novel sepsis pig model is created that for the first time recapitulates the whole course of sepsis in humans. With this model and sepsis patients, increased levels of the transcription factor zinc finger BED-type containing 6 (ZBED6) in skeletal muscle are shown. Protection against sepsis-induced muscle wasting in ZBED6-deficient pigs is further demonstrated. Mechanistically, integrated analysis of RNA-seq and ChIP-seq reveals dedicator of cytokinesis 3 (DOCK3) as the direct target of ZBED6. In septic ZBED6-deficient pigs, DOCK3 expression is increased in skeletal muscle and myocytes, activating the RAC1/PI3K/AKT pathway and protecting against sepsis-induced muscle wasting. Conversely, opposite gene expression patterns and exacerbated muscle wasting are observed in septic ZBED6-overexpressing myotubes. Notably, sepsis patients show increased ZBED6 expression along with reduced DOCK3 and downregulated RAC1/PI3K/AKT pathway. These findings suggest that ZBED6 is a potential therapeutic target for sepsis-induced muscle atrophy, and the established sepsis pig model is a valuable tool for understanding sepsis pathogenesis and developing its therapeutics.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sepse , Animais , Humanos , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Sepse/complicações , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
3.
Mol Nutr Food Res ; 65(17): e2100070, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34223710

RESUMO

SCOPE: Obesity is a major public health and economic problem of global significance. Here, we investigate the role of diosmetin, a natural flavonoid presents mainly in citrus fruits, in the regulation of obesity and metabolic dysfunctions in mice. METHODS AND RESULTS: Eight-week-old male C57BL/6 mice fed a high-fat diet (HFD) or 5-week-old male ob/ob mice fed a normal diet are treated with diosmetin (50 mg kg-1 daily) or vehicle for 8 weeks. Diosmetin treatment decreases body weight and fat mass, improves glucose tolerance and insulin resistance in obese mice. These metabolic benefits are mainly attributed to increase energy expenditure via enhancing thermogenesis in brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Mechanistically, diosmetin acts as an agonist for estrogen receptors (ERs), and subsequently elevates adipose expressions of ERs in mice and in cultured adipocytes. When ERs are blocked by their antagonist fulvestrant in mice, diosmetin loses its beneficial effects, suggesting that ERs are indispensable for the metabolic benefits of diosmetin. CONCLUSION: The results indicate that diosmetin may be a potential anti-obesity nutritional supplement and could be explored for low ERs-related obesity populations.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Flavonoides/farmacologia , Obesidade/prevenção & controle , Receptores de Estrogênio/metabolismo , Células 3T3-L1 , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Intolerância à Glucose/prevenção & controle , Inflamação/prevenção & controle , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Termogênese/efeitos dos fármacos
4.
Xenotransplantation ; 27(1): e12550, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31435990

RESUMO

BACKGROUND: In vivo pig liver xenotransplantation preclinical trials appear to have poor efficiency compared to heart or kidney xenotransplantation because of xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia. In contrast, ex vivo pig liver (wild type) perfusion systems have been proven to be effective in "bridging" liver failure patients until subsequent liver allotransplantation, and transgenic (human CD55/CD59) modifications have even prolonged the duration of pig liver perfusion. Despite the fact that hepatocyte cell lines have also been proposed for extracorporeal blood circulation in conditions of acute liver failure, porcine hepatocyte cell lines, and the GalT-KO background in particular, have not been developed and applied in this field. Herein, we established immortalized wild-type and GalT-KO porcine hepatocyte cell lines, which can be used for artificial liver support systems, cell transplantation, and even in vitro studies of xenotransplantation. METHODS: Primary hepatocytes extracted from GalT-KO and wild-type pigs were transfected with SV40 LT lentivirus to establish immortalized GalT-KO porcine hepatocytes (GalT-KO-hep) and wild-type porcine hepatocytes (WT). Hepatocyte biomarkers and function-related genes were assessed by immunofluorescence, periodic acid-Schiff staining, indocyanine green (ICG) uptake, biochemical analysis, ELISA, and RT-PCR. Furthermore, the tumorigenicity of immortalized cells was detected. In addition, a complement-dependent cytotoxicity (CDC) assay was performed with GalT-KO-hep and WT cells. Cell death and viability rates were assessed by flow cytometry and CCK-8 assay. RESULTS: GalT-KO and wild-type porcine hepatocytes were successfully immortalized and maintained the characteristics of primary porcine hepatocytes, including albumin secretion, ICG uptake, urea and glycogen production, and expression of hepatocyte marker proteins and specific metabolic enzymes. GalT-KO-hep and WT cells were confirmed as having no tumorigenicity. In addition, GalT-KO-hep cells showed less apoptosis and more viability than WT cells when exposed to complement and xenogeneic serum. CONCLUSIONS: Two types of immortalized cell lines of porcine hepatocytes with GalT-KO and wild-type backgrounds were successfully established. GalT-KO-hep cells exhibited higher viability and injury resistance against a xenogeneic immune response.


Assuntos
Transtornos da Coagulação Sanguínea/imunologia , Rejeição de Enxerto/imunologia , Hepatócitos/fisiologia , Transplante de Fígado , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Animais , Carcinogênese , Linhagem Celular Transformada , Células Cultivadas , Técnicas de Inativação de Genes , Sobrevivência de Enxerto , Humanos , Suínos , Trombocitopenia , Transplante Heterólogo
5.
Xenotransplantation ; 26(6): e12537, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31433094

RESUMO

After hyperacute rejection in pig-to-primate xenotransplantation had been overcome by the introduction of α1,3-galactosyltransferase gene-knockout (GTKO) pigs, acute and chronic antibody-mediated rejection became one of the major barriers to long-term graft survival. This was associated with exposure of non-Gal antigens to the recipient's immune system and indicated that further genetic engineering of the pigs would be necessary. We here report that Gabarapl1, a regulator of tumorigenesis, plays a role in the regulation of immunogenicity of porcine aortic endothelial cells (PAECs). Knockdown of Gabarapl1 in PAECs results in a remarkable reduction in binding of serum antibody from PAEC-immunized monkeys, associated with decreased serum cytotoxicity of pig cells. Expression of swine leukocyte antigens (SLA) II DR was downregulated by Gabarapl1 knockdown. However, suppression of expression of SLA II is associated with less reduction of antibody binding than achieved by Gabarapl1 knockdown, suggesting that other Gabarapl1-regulated xenoantigens may be more important. These findings indicate a hitherto unknown relationship between Gabarapl1 and xenoimmunogenicity, suggesting a potential new strategy to reduce rejection initiated by the presence of non-Gal antigens.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos Heterófilos/metabolismo , Células Endoteliais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Células Endoteliais/imunologia , Técnicas de Inativação de Genes , Xenoenxertos/metabolismo , Suínos , Transplante Heterólogo/métodos
6.
Int J Biol Sci ; 15(2): 481-492, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745836

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease and the most economically important disease of the swine industry worldwide. Highly pathogenic-PRRS virus (HP-PRRSV) is a variant of PRRSV, which caused high morbidity and mortality. Scavenger receptor CD163, which contains nine scavenger receptor cysteine-rich (SRCR) domains, is a key entry mediator for PRRSV. A previous study demonstrated that SRCR domain 5 (SRCR5), encoded by exon 7, was essential for PRRSV infection in vitro. Here, we substituted exon 7 of porcine CD163 with the corresponding exon of human CD163-like 1 (hCD163L1) using a CRISPR/Cas9 system combined with a donor vector. In CD163Mut/Mut pigs, modifying CD163 gene had no adverse effects on hemoglobin-haptoglobin (Hb-Hp) complex clearance or erythroblast growth. In vitro infection experiments showed that the CD163 mutant strongly inhibited HP-PRRSV replication by inhibiting virus uncoating and genome release. Compared to wild-type (WT) pigs in vivo, HP-PRRSV-infected CD163Mut/Mut pigs showed a substantially decreased viral load in blood and relief from PRRSV-induced fever. While all WT pigs were dead, there of four CD163Mut/Mut pigs survived and recovered at the termination of the experiment. Our data demonstrated that modifying CD163 remarkably inhibited PRRSV replication and protected pigs from HP-PRRSV infection, thus establishing a good foundation for breeding PRRSV-resistant pigs via gene editing technology.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Edição de Genes/métodos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Receptores de Superfície Celular/genética , Animais , Sistemas CRISPR-Cas/genética , Éxons/genética , Suínos
7.
Proc Natl Acad Sci U S A ; 115(47): E11071-E11080, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30381455

RESUMO

Substantial rates of fetal loss plague all in vitro procedures involving embryo manipulations, including human-assisted reproduction, and are especially problematic for mammalian cloning where over 90% of reconstructed nuclear transfer embryos are typically lost during pregnancy. However, the epigenetic mechanism of these pregnancy failures has not been well described. Here we performed methylome and transcriptome analyses of pig induced pluripotent stem cells and associated cloned embryos, and revealed that aberrant silencing of imprinted genes, in particular the retrotransposon-derived RTL1 gene, is the principal epigenetic cause of pregnancy failure. Remarkably, restoration of RTL1 expression in pig induced pluripotent stem cells rescued fetal loss. Furthermore, in other mammals, including humans, low RTL1 levels appear to be the main epigenetic cause of pregnancy failure.


Assuntos
Metilação de DNA/genética , Impressão Genômica/genética , Células-Tronco Pluripotentes Induzidas/citologia , Complicações na Gravidez/genética , Proteínas Repressoras/genética , Retroelementos/genética , Animais , Transferência Embrionária/efeitos adversos , Embrião de Mamíferos/citologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Transferência Nuclear , Gravidez , Suínos
8.
Xenotransplantation ; 24(4)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28474373

RESUMO

Cytokines play crucial roles in inflammation, but their role in xenotransplantation remains elusive. We assessed the role of several cytokines using an in vitro model of human antibody-mediated complement-dependent cytotoxicity (CDC). Recombinant human angiopoietin-1 (Ang-1) protected porcine iliac endothelial cells (PIECs) from human antibody-mediated CDC. Interestingly, human angiopoietin-2 (Ang-2) had a similar protective effect on PIECs. By flow cytometry analysis, the extent of human IgM and IgG binding to PIECs did not decrease when PIECs were exposed to Ang-1/Ang-2. The mRNA level of complement regulators (CD46, CD55, CD59) was not upregulated in PIECs treated with Ang-1/Ang-2, both of which activated the PI3K/AKT pathway in PIECs. Wortmannin, which inhibits phosphatidylinositide 3-kinase (PI3K), suppressed Ang-1/Ang-2-induced AKT phosphorylation and consequent Ang-1/Ang-2-mediated protection of PIECs in human antibody-mediated CDC model. Moreover, dominant negative AKT also suppressed Ang-1/Ang-2-mediated protection of PIECs in this model. In conclusion, our data suggest that human Ang-1/Ang-2 induces the protection of PIECs from human antibody-mediated CDC by activating the PI3K/AKT pathway. Ang-1/Ang-2 is likely to protect porcine endothelial cells and may be beneficial in xenotransplantation research.


Assuntos
Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Células Endoteliais/metabolismo , Íleo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Imunoglobulinas/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos , Transplante Heterólogo
9.
Xenotransplantation ; 24(3)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28397982

RESUMO

BACKGROUND: Blastocyst complementation is an important technique for generating chimeric organs in organ-deficient pigs, which holds great promise for solving the problem of a shortage of organs for human transplantation procedures. Porcine chimeras have been generated using embryonic germ cells, embryonic stem cells, and induced pluripotent stem cells; however, there are no authentic pluripotent stem cells for pigs. In previous studies, blastomeres from 4- to 8-cell-stage parthenogenetic embryos were able to generate chimeric fetuses efficiently, but the resulting fetuses did not produce live-born young. Here, we used early-stage embryos from somatic cell nuclear transfer (SCNT) to generate chimeric piglets by the aggregation method. Then, the distribution of chimerism in various tissues and organs was observed through the expression of enhanced green fluorescent protein (EGFP). METHODS: Initially, we determined whether 4- to 8- or 8- to 16-cell-stage embryos were more suitable to generate chimeric piglets. Chimeras were produced by aggregating two EGFP-tagged Wuzhishan minipig (WZSP) SCNT embryos and two Bama minipig (BMP) SCNT embryos. The chimeric piglets were identified by coat color and microsatellite and swine leukocyte antigen analyses. Moreover, the distribution of chimerism in various tissues and organs of the piglets was evaluated by EGFP expression. RESULTS: We found that more aggregated embryos were produced using 4- to 8-cell-stage embryos (157/657, 23.9%) than 8- to 16-cell-stage embryos (100/499, 20.0%). Thus, 4- to 8-cell-stage embryos were used for the generation of chimeras. The rate of blastocysts development after aggregating WZSP with BMP embryos was 50.6%. Transfer of 391 blastocysts developed from 4- to 8-cell-stage embryos to five recipients gave rise to 18 piglets, of which two (11.1%) were confirmed to be chimeric by their coat color and microsatellite examination of the skin. One of the chimeric piglets died at 35 days and was subsequently autopsied, whereas the other piglet was maintained for the following observations. The heart and kidneys of the dead piglet showed chimerism, whereas the spinal cord, stomach, pancreas, intestines, muscle, ovary, and brain had no chimerism. CONCLUSIONS: To our knowledge, this is the first report of porcine chimeras generated by aggregating 4- to 8-cell-stage blastomeres from SCNT. We detected chimerism only in the skin, heart, and kidneys. Collectively, these results indicate that aggregation using 4- to 8-cell-stage SCNT embryos offers a practical approach for producing chimeric minipigs. Furthermore, it also provides a potential platform for generating interspecific chimeras between pigs and non-human primates for xenotransplantation.


Assuntos
Blastômeros/citologia , Técnicas de Transferência Nuclear , Porco Miniatura/embriologia , Porco Miniatura/genética , Quimeras de Transplante/embriologia , Quimeras de Transplante/genética , Animais , Animais Geneticamente Modificados , Agregação Celular , Técnicas de Cultura Embrionária/métodos , Transferência Embrionária/métodos , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Repetições de Microssatélites , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pigmentação da Pele/genética , Suínos , Quimeras de Transplante/metabolismo
10.
Xenotransplantation ; 24(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130792

RESUMO

Long-term success in pig-to-primate xenotransplantation is currently hampered by acute vascular rejection (AVR), characterized by endothelial cell (EC) activation and injury. Klotho has anti-apoptotic, anti-inflammatory effects on EC and protects EC against reactive oxygen species, rendering klotho a promising molecule to control AVR. In this study, porcine ECs were pre-incubated with klotho and then exposed to xenoreactive antibodies and complement. Real-time PCR revealed that klotho suppressed antibody-induced pro-inflammatory gene expression of VCAM-1 and IL-1α. NF-κB activation, IκBα phosphorylation, was also attenuated by klotho administration. Furthermore, klotho induced in porcine EC resistance against complement-dependent cytotoxicity. Accompanying this change, the binding of IgG and IgM xenoreactive antibodies to porcine EC was decreased and the expression of anti-inflammatory gene HO-1 was upregulated. These findings indicated that klotho protein protected porcine EC from activation and injury caused by binding of xenoreactive antibodies and was a promising candidate molecule in a multitransgenic pig strategy for xenotransplantation.


Assuntos
Células Endoteliais/citologia , Glucuronidase/metabolismo , Rejeição de Enxerto/imunologia , Transplante Heterólogo , Animais , Células Cultivadas , Proteínas do Sistema Complemento/metabolismo , Endotélio Vascular/metabolismo , Humanos , Proteínas Klotho , Suínos , Transplante Heterólogo/métodos , Fator de Necrose Tumoral alfa/metabolismo
11.
Stem Cells ; 33(11): 3228-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26138940

RESUMO

To date no authentic embryonic stem cell (ESC) line or germline-competent-induced pluripotent stem cell (iPSC) line has been established for large animals. Despite this fact, there is an impression in the field that large animal ESCs or iPSCs are as good as mouse counterparts. Clarification of this issue is important for a healthy advancement of the stem cell field. Elucidation of the causes of this failure in obtaining high quality iPSCs/ESCs may offer essential clues for eventual establishment of authentic ESCs for large animals including humans. To this end, we first generated porcine iPSCs using nonintegrating replicating episomal plasmids. Although these porcine iPSCs met most pluripotency criteria, they could neither generate cloned piglets through nuclear transfer, nor contribute to later stage chimeras through morula injections or aggregations. We found that the reprogramming genes in iPSCs could not be removed even under negative selection, indicating they are required to maintain self-renewal. The persistent expression of these genes in porcine iPSCs in turn caused differentiation defects in vivo. Therefore, incomplete reprogramming manifested by a reliance on sustained expression of exogenous-reprogramming factors appears to be the main reason for the inability of porcine iPSCs to form iPSC-derived piglets.


Assuntos
Vetores Genéticos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Plasmídeos/fisiologia , Transgenes/fisiologia , Quimeras de Transplante/fisiologia , Animais , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Feminino , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Nus , Técnicas de Transferência Nuclear , Suínos , Porco Miniatura
12.
Cell Physiol Biochem ; 36(1): 233-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25967963

RESUMO

BACKGROUND: The activation of tissue factor (TF) is one of the major reasons for coagulation dysregulation after pig-to-primate xenotransplantation. Tissue factor pathway inhibitor (TFPI) is the most important inhibitor of TF. Studies have demonstrated species incompatibility between pig TFPI and human TF. METHODS: A pig-to-macaque heterotopic auxiliary liver transplantation model was established to determine the origin of activated TF. Chimeric proteins of human and pig TFPI were constructed to assess the role of Kunitz domains in species incompatibility. Immortalised pig bone marrow mesenchymal stem cells transfected with human TFPI were tested for their ability to inhibit clotting in vitro. RESULTS: TF from recipient was activated early after liver xenotransplantation. Pig TFPI Kunitz domain 2 bound human FXa, but Kunitz domain 1 did not effectively inhibit human TF/FVIIa. Immortalised pig bone marrow mesenchymal cells (BMSCs) transfected with human TFPI showed a prolonged recalcification time in vitro and in a rodent model. CONCLUSION: Recipient TF is relevant to dysregulated coagulation after xenotransplantation. Kunitz domain 1 plays the most important role in species incompatibility between pig TFPI and human TF, and clotting can be inhibited by human TFPI-transfected pig BMSCs. Our study shows a possible way to resolve the incompatibility of pig TFPI.


Assuntos
Coagulação Sanguínea , Lipoproteínas/metabolismo , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tromboplastina/metabolismo , Animais , Células Cultivadas , Humanos , Técnicas In Vitro , Lipoproteínas/química , Lipoproteínas/genética , Transplante de Fígado , Macaca , Masculino , Transplante de Células-Tronco Mesenquimais , Modelos Animais , Estrutura Terciária de Proteína , Especificidade da Espécie , Suínos , Porco Miniatura , Tromboplastina/genética , Transplante Heterólogo , Transplante Heterotópico
13.
J Nutr Biochem ; 25(8): 824-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880493

RESUMO

Sulforaphane, a naturally occurring isothiocyanate present in cruciferous vegetables, has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of sulforaphane at physiological concentrations remain unclear. Here, we report that a sulforaphane concentration as low as 0.5 µM significantly inhibited tumor necrosis factor-α (TNF-α)-induced adhesion of monocytes to human umbilical vein endothelial cells, a key event in the pathogenesis of atherosclerosis both in static and under flow conditions. Such physiological concentrations of sulforaphane also significantly suppressed TNF-α-induced production of monocyte chemotactic protein-1 and adhesion molecules including soluble vascular adhesion molecule-1 and soluble E-selectin, key mediators in the regulation of enhanced endothelial cell-monocyte interaction. Furthermore, sulforaphane inhibited TNF-α-induced nuclear factor (NF)-κB transcriptional activity, Inhibitor of NF-κB alpha (IκBα) degradation and subsequent NF-κB p65 nuclear translocation in endothelial cells, suggesting that sulforaphane can inhibit inflammation by suppressing NF-κB signaling. In an animal study, sulforaphane (300 ppm) in a mouse diet significantly abolished TNF-α-increased ex vivo monocyte adhesion and circulating adhesion molecules and chemokines in C57BL/6 mice. Histology showed that sulforaphane treatment significantly prevented the eruption of endothelial lining in the intima layer of the aorta and preserved elastin fibers' delicate organization, as shown by Verhoeff-van Gieson staining. Immunohistochemistry studies showed that sulforaphane treatment also reduced vascular adhesion molecule-1 and monocyte-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, sulforaphane at physiological concentrations protects against TNF-α-induced vascular endothelial inflammation, in both in vitro and in vivo models. This anti-inflammatory effect of sulforaphane may be, at least in part, associated with interfering with the NF-κB pathway.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Isotiocianatos/farmacologia , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Vasculite/dietoterapia , Animais , Aorta/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Suplementos Nutricionais , Selectina E/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Sulfóxidos , Fator de Necrose Tumoral alfa/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Vasculite/patologia
15.
Yi Chuan ; 34(10): 1291-7, 2012 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-23099785

RESUMO

The Hedgehog (Hh) signaling pathway inhibits fat accumulation, which is conserved in a wide variety of organisms from Drosophila to vertebrates, but few reports about its effect on pigs are available. In this study, pig Gli1 gene was cloned for the first time by rapid amplification of cDNA ends (RACE) and RT-PCR. Pig Gli1 expression profiles were then studied in different tissues and in different developmental stages of the adipose tissue of pigs using real-time PCR. Finally, the eukaryotic expression vector and the adipose tissue specific expression vector were constructed. The results showed that the full pig Gli1 cDNA length was 3 576 bp, the genomic sequence contained 10 715 bp with 12 exons, and 1 106 amino acids were encoded. Pig Gli1 was predicted as an unstable hydrophilic protein without a tans-membrane structure or a signal peptide. The C2H2 zinc finger domain and a nuclear localization sequence were found in pig Gli1. A homology analysis of the Gli1 amino acids and the genomic sequences among seven species showed that the identities were all greater than 80%, which indicates that Gli1 is highly conserved among different species. Tissue expression profile analysis showed that pig Gli1 was only expressed in the tone tissue of adult pigs. Analysis of the pig adipose tissue developmental process showed that Gli1 was detected in the adipose tissue of one-week-old pigs, but not in one-month-old and three-month-old pigs. Finally, a pig Gli1 eukaryotic expression vector was constructed and properly expressed with cell transfection. An adipose tissue specific expression vector was constructed for transgenic animal studies.


Assuntos
Tecido Adiposo/metabolismo , Proteínas Oncogênicas/genética , Suínos/genética , Transativadores/genética , Animais , Clonagem Molecular , DNA Complementar/química , Perfilação da Expressão Gênica , Vetores Genéticos , Proteína GLI1 em Dedos de Zinco
16.
Chem Commun (Camb) ; 47(3): 908-10, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21079851

RESUMO

Nearly monodispersed magnetic Fe(3)O(4)@DFUR-LDH submicro particles containing the anticancer agent DFUR were prepared via a coprecipitation-calcination-reconstruction strategy of LDH materials over the surface of Fe(3)O(4) particles, and present well-defined core-shell structure, strong magnetization and obvious magnetically controlled drug delivery and release properties.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Óxido Ferroso-Férrico/química , Floxuridina/administração & dosagem , Hidróxidos/química , Magnetismo
17.
Sci China Life Sci ; 53(4): 517-23, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20596920

RESUMO

Omega-3(omega-3) fatty acid desaturase transgenic pigs may improve carcass fatty acid composition. The use of transgenic pigs is also an excellent large animal model for studying the role of omega-3 fatty acids in the prevention and treatment of coronary heart disease and cancer. Transgenic pigs carrying synthesized fatty acid desaturase-1 gene (sFat-1) from Caenorhabditis briggsae by somatic cell nuclear transfer (SCNT) were produced for the first time in China. Porcine fetal fibroblast cells were transfected with a sFat-1 expression cassette by the liposome-mediated method. Transgenic embryos were reconstructed by nuclear transfer of positive cells into enucleated in vitro matured oocytes. A total of 1889 reconstructed embryos were transferred into 10 naturally cycling gilts. Nine early pregnancies were established, 7 of which went to term. Twenty-one piglets were born. The cloning efficiency was 1.1% (born piglets/transferred embryos). The integration of the sFat-1 gene was confirmed in 15 live cloned piglets by PCR and Southern blot except for 2 piglets. Expression of the sFat-1 gene in 12 of 13 piglets was detected with RT-PCR. The data demonstrates that an efficient system for sFat-1 transgenic cloned pigs was developed, which led to the successful production of piglets expressing the sFat-1 gene.


Assuntos
Animais Geneticamente Modificados , Ácidos Graxos Dessaturases/genética , Técnicas de Transferência Nuclear , Sus scrofa/genética , Animais , China , Diploide , Transferência Embrionária , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Ômega-3/metabolismo , Fibroblastos/metabolismo , Técnicas In Vitro , Transfecção
18.
Yi Chuan ; 31(4): 387-92, 2009 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-19586891

RESUMO

In the present study, the DNA methylation patterns of in vitro-derived mouse tetraploid embryos were investigated by immunofluorescence staining with an antibody against 5-methylcytosine (5MeC). Tetraploid embryos could be produced by electrofusion at the stage of two-cell embryos, which could develop to blastocysts followed by fusion of cytoplasm and nucleus and cleavage in vitro. During the fusion of cytoplasm, the DNA methylation levels of the fused embryos are as high as these of two-cell diploid embryos in vivo Then the embryos are rapidly demethylated when the nucleus begin to fuse, resulting in the lowest DNA methylation levels when the nucleus are fused completely. After that, the DNA methylation levels of the fused embryos are gradually increased until the morula stage. However, whereas an asymmetric distribution of DNA methylation is established in vivo-derived blastocysts with a higher methylation level in the inner cell mass (ICM) than that in the trophectoderm, we can not detect the asymmetric distribution in most in vitro-derived tetraploid blastocysts. So the DNA methylation patterns of mouse tetraploid embryos are aberrant, which may lead to subsequent developmental failure and embryo death. This is the first report on the methylation patterns of in vitro-derived mouse tetraploid embryos.


Assuntos
Metilação de DNA/genética , Poliploidia , Animais , Diploide , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA