Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 322: 117507, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38122910

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlong Jianji (SLJJ) is a Chinese herbal compound composed of traditional medicines for supplementing Qi, nourishing Yin, promoting blood circulation, and removing obstruction in channels. It is widely used to treat idiopathic pulmonary fibrosis (IPF) in China. However, the underlying mechanism of SLJJ remains unclear. AIM OF THIS STUDY: To elucidate the efficacy and mechanisms of SLJJ in the treatment of IPF through in vivo and in vitro experiments. MATERIAL AND METHODS: 84 Wistar rats were randomly and equally divided into 7 groups: the control group (CTRL), the sham operation group (SHAM), the model group (IPF), the low dose of SLJJ group (L-SLJJ), the middle dose of SLJJ group (M-SLJJ), the high dose of SLJJ group (H-SLJJ), and the pirfenidone group (PFD). The rats in the CTRL, SHAM, and IPF groups were given normal saline each time for 28 days; the SLJJ groups were given Shenlong Jianji (9 g kg-1·d-1, 18 g kg-1·d-1, 36 g kg-1·d-1), and pirfenidone was administered as a sequential dose. After 28 days, the general condition of the rats was evaluated, and samples were collected. The lung coefficient was measured. The pathological changes of lung in each group were observed by H&E staining and Masson staining. α-SMA, collagen 1, and E-cadherin proteins were detected by immunohistochemistry. α-SMA, collagen 1, vimentin, E-cadherin, N-cadherin, TGF-ß1, smad2, and smad3 proteins were detected by WB in vivo.In vitro, A scratch test was used to assess the ratio of cell migration. α-SMA, vimentin, E-cadherin, and N-cadherin protein levels were evaluated by a cellular immunofluorescence assay. TGF-ß1/smads signaling pathway was detected by WB. HPLC-Q-TOF/MS analysis was used to identify the active compounds in the SLJJ. Molecular docking determined the free binding energy of the compound with the TGF-ß1 protein. RESULTS: SLJJ significantly improved the respiratory symptoms, heart rate, mental state, and food intake of IPF group rats and decreased the lung coefficient. In the IPF group, inflammatory cells were infiltrated, and the thickened alveoli wall and alveoli collapse were shown, while significantly alleviating pathological changes in the SLJJ and PFD groups. Masson staining showed that SLJJ and PFD decreased the collagen expression. Immunohistochemical results showed that the expressions of α-SMA, collagen 1, and N-cadherin decreased in the SLJJ and PFD groups, while E-cadherin increased significantly compared with the IPF group. SLJJ regulates TGF-ß1/smads signaling pathway proteins in vivo. SLJJ decreased the ratio of migration in HFL-1 cells; SLJJ reduced the fluorescence intensity of α-SMA, vimentin, and N-cadherin and increased the fluorescence intensity of E-cadherin in primary rat lung (PRL) fibroblast cells and HFL-1 cells. WB results showed that SLJJ significantly down-regulated α-SMA, Vimentin, N-cadherin, TGF-ß1, smad2, and p-smad2/3 proteins expression and up-regulated E-cadherin protein expression in vitro, whereas SRI-011381 (a TGF-ß1 agonist) antagonized the effects of SLJJ. CONCLUSION: SLJJ inhibits idiopathic pulmonary fibrosis. The TGF- ß1/Smads signaling pathway can be the target of SLJJ, which inhibits fibroblast-to-myofibroblast transformation and is expected to be a new drug for the treatment of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Miofibroblastos/metabolismo , Vimentina , Simulação de Acoplamento Molecular , Ratos Wistar , Fibroblastos , Transdução de Sinais , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Colágeno/metabolismo , Caderinas/metabolismo
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 751-765, 2023 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38105677

RESUMO

OBJECTIVES: To investigate the mechanism of comorbidity between non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS) based on metabolomics and network pharmacology. METHODS: Six ApoE-/- mice were fed with a high-fat diet for 16 weeks as a comorbid model of NAFLD and AS (model group). Normal diet was given to 6 wildtype C57BL/6J mice (control group). Serum samples were taken from both groups for a non-targeted metabolomics assay to identify differential metabolites. Network pharmacology was applied to explore the possible mechanistic effects of differential metabolites on AS and NAFLD. An in vitro comorbid cell model was constructed using NCTC1469 cells and RAW264.7 macrophage. Cellular lipid accumulation, cell viability, morphology and function of mitochondria were detected with oil red O staining, CCK-8 assay, transmission electron microscopy and JC-1 staining, respectively. RESULTS: A total of 85 differential metabolites associated with comorbidity of NAFLD and AS were identified. The top 20 differential metabolites were subjected to network pharmacology analysis, which showed that the core targets of differential metabolites related to AS and NAFLD were STAT3, EGFR, MAPK14, PPARG, NFKB1, PTGS2, ESR1, PPARA, PTPN1 and SCD. The Kyoto Encyclopedia of Genes and Genomes showed the top 10 signaling pathways were PPAR signaling pathway, AGE-RAGE signaling pathway in diabetic complications, alcoholic liver disease, prolactin signaling pathway, insulin resistance, TNF signaling pathway, hepatitis B, the relax in signaling pathway, IL-17 signaling pathway and NAFLD. Experimental validation showed that lipid metabolism-related genes PPARG, PPARA, PTPN1, and SCD were significantly changed in hepatocyte models, and steatotic hepatocytes affected the expression of macrophage inflammation-related genes STAT3, NFKB1 and PTGS2; steatotic hepatocytes promoted the formation of foam cells and exacerbated the accumulation of lipids in foam cells; the disrupted morphology, impaired function, and increased reactive oxygen species production were observed in steatotic hepatocyte mitochondria, while the formation of foam cells aggravated mitochondrial damage. CONCLUSIONS: Abnormal lipid metabolism and inflammatory response are distinctive features of comorbid AS and NAFLD. Hepatocyte steatosis causes mitochondrial damage, which leads to mitochondrial dysfunction, increased reactive oxygen species and activation of macrophage inflammatory response, resulting in the acceleration of AS development.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ciclo-Oxigenase 2/metabolismo , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Hepatócitos , Macrófagos/metabolismo , Fígado
3.
Discov Med ; 35(178): 887-896, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811627

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) patients who suffer from acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) are at increased risk of respiratory deterioration and death. Non-coding RNAs (ncRNAs) play a vital role in AE-IPF, but studies of crosstalk between transcripts of IPF based on Traditional Chinese Medicine (TCM) syndrome type are relatively few. The construction of long non-coding RNAs (lncRNA)/circular RNAs (circRNA)-microRNAs (miRNA)-mRNA interaction networks can promote understanding RNA interaction in different syndrome types of AE-IPF. The study aimed to identify the difference in RNA transcription expression between IPF patients with "lung heat and collateral stasis (LHCS)" and "lung deficiency with collateral stasis (LDCS)" syndromes, further to construct the potential RNA networks. METHODS: Five IPF patients with LHCS and five IPF patients with LDCS were recruited in this study to perform RNA sequencing and miRNA sequencing. Further analysis was carried out on the differential expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs among patients with LHCS and LDCS. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The lncRNA/circRNA-miRNA-mRNA competing endogenous RNAs (ceRNAs) network was constructed, and the key regulatory molecules were analyzed. RESULTS: For LHCS and LDCS, we identified 69 lncRNAs, 150 circRNAs, 27 miRNAs, and 56 mRNAs. Differential expression analysis through GO and KEGG highlights that differentially expressed mRNAs have significant associations with pathways such as tight junction and Hepatitis C. Within the ceRNA network, all nodes have a direct or indirect association with LHCS progression. The hsa-miR-150-5p core sub-network is composed of 1 lncRNA, 6 circRNAs, 1 miRNA, and 5 mRNAs. From the ceRNA sub-network analysis, NR_120628/hsa-miR-150-5p/E2F3 and hsa-circ-0053515/hsa-miR-150-5p/E2F3 emerged as the pivotal ceRNA pairs. CONCLUSIONS: This study highlights that the NR_120628/hsa-miR-150-5p/E2F3 and hsa-circ-0053515/hsa-miR-150-5p/E2F3 axes could be central in the regulation of LHCS, providing valuable insights into potential directions for subsequent research on LHCS. TRIAL REGISTRATION: Chinese clinical trial registry (CHiCTR23007405). Registered on July 27, 2023. https://www.chictr.org.cn/.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma/genética , MicroRNAs/genética , Fibrose Pulmonar Idiopática/genética
4.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1352-1369, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005819

RESUMO

Atherosclerosis(AS) is caused by impaired lipid metabolism, which deposits lipids in the intima, causes vascular fibrosis and calcification, and then leads to stiffening of the vascular wall. Hyperlipidemia(HLP) is one of the key risk factors for AS. Based on the theory of "nutrients return to the heart and fat accumulates in the channels", it is believed that the excess fat returning to the heart in the vessels is the key pathogenic factor of AS. The accumulation of fat in the vessels over time and the blood stasis are the pathological mechanisms leading to the development of HLP and AS, and "turbid phlegm and fat" and "blood stasis" are the pathological products of the progression of HLP into AS. Didang Decoction(DDD) is a potent prescription effective in activating blood circulation, removing blood stasis, resolving turbidity, lowering lipids, and dredging blood vessels, with the functions of dispelling stasis to promote regeneration, which has certain effects in the treatment of atherosclerotic diseases. This study employed high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS) to screen the main blood components of DDD, explored the targets and mechanisms of DDD against AS and HLP with network pharmacology, and verified the network pharmacological results by in vitro experiments. A total of 231 blood components of DDD were obtained, including 157 compounds with a composite score >60. There were 903 predicted targets obtained from SwissTargetPrediction and 279 disease targets from GeneCards, OMIM, and DisGeNET, and 79 potential target genes of DDD against AS and HLP were obtained by intersection. Gene Ontology(GO) analysis suggested that DDD presumably exerted regulation through biological processes such as cholesterol metabolism and inflammatory response, and Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis suggested that signaling pathways included lipid and atherosclerosis, insulin resistance, chemo-carcinogenesis-receptor activation, and AGE-RAGE signaling pathways in diabetic complications. In vitro experiments showed that DDD could reduce free fatty acid-induced lipid accumulation and cholesterol ester content in L02 cells and improve cellular activity, which might be related to the up-regulation of the expression of PPARα, LPL, PPARG, VEGFA, CETP, CYP1A1, and CYP3A4, and the down-regulation of the expression of TNF-α and IL-6. DDD may play a role in preventing and treating AS and HLP by improving lipid metabolism and inflammatory response, and inhibiting apoptosis with multi-component, multi-target, and multi-pathway characteristics.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Hiperlipidemias , Humanos , Hiperlipidemias/tratamento farmacológico , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Farmacologia em Rede , Nutrientes , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Lipídeos , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
5.
J Ethnopharmacol ; 308: 116289, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36822344

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: DiDang Decoction (DDD) is a traditional classical prescription that has been used to treat atherosclerosis (AS) and hyperlipidemia (HLP) in China. Nevertheless, the underlying mechanism of DDD remains unclear. AIM OF THE STUDY: To validate the mechanism of DDD in AS and HLP based on network pharmacology and in vitro experiments. MATERIALS AND METHODS: The chemical components of DDD were obtained from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) database and literature mining, and the disease targets of AS and HLP were obtained from the Gencards, OMIM, and DisGeNET databases. The intersection genes were imported into the STRING database to construct protein-protein interaction (PPI) network, and the DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Combined with the results of KEGG pathway analysis, the HIF-1 signaling pathway was selected for further in vitro experiments. RESULTS: The results showed that network pharmacology predicted 112 targets related to DDD treatment of AS and HLP, and the top 10 related pathways are: Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, Chemical carcinogenesis - receptor activation, Pathways in cancer, Proteoglycans in cancer, Fluid shear stress and atherosclerosis, HIF-1 signaling pathway, Alcoholic liver disease, PPAR signaling pathway, and Coronavirus disease-COVID-19. In vitro experiments showed that DDD effectively reduced lipid accumulation in FFA-treated L02 cells; DDD attenuated mitochondrial damage and reduced ROS content; DDD inhibited ferroptosis and apoptosis; DDD up-regulated the expression of HIF-1α, Glutathione Peroxidase 4(GPX4), and Bcl2 proteins, and down-regulated expression of Bax protein. CONCLUSION: DDD exerts therapeutic effects on AS and HLP through multiple targets and pathways, and improves mitochondrial function, reduces ROS content, inhibits ferroptosis and apoptosis by activating the HIF-1 signaling pathway, which provides reliable theoretical and experimental support for DDD treatment of AS and HLP.


Assuntos
Aterosclerose , COVID-19 , Medicamentos de Ervas Chinesas , Hiperlipidemias , Humanos , Metabolismo dos Lipídeos , Espécies Reativas de Oxigênio , Transdução de Sinais , Mitocôndrias , Lipídeos , Simulação de Acoplamento Molecular , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA