Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23662, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752545

RESUMO

The ubiquitination function in diabetic nephropathy (DN) has attracted much attention, but there is a lack of information on its ubiquitylome profile. To examine the differences in protein content and ubiquitination in the kidney between db/db mice and db/m mice, we deployed liquid chromatography-mass spectrometry (LC-MS/MS) to conduct analysis. We determined 145 sites in 86 upregulated modified proteins and 66 sites in 49 downregulated modified proteins at the ubiquitinated level. Moreover, 347 sites among the 319 modified proteins were present only in the db/db mouse kidneys, while 213 sites among the 199 modified proteins were present only in the db/m mouse kidneys. The subcellular localization study indicated that the cytoplasm had the highest proportion of ubiquitinated proteins (31.87%), followed by the nucleus (30.24%) and the plasma membrane (20.33%). The enrichment analysis revealed that the ubiquitinated proteins are mostly linked to tight junctions, oxidative phosphorylation, and thermogenesis. Podocin, as a typical protein of slit diaphragm, whose loss is a crucial cause of proteinuria in DN. Consistent with the results of ubiquitination omics, the K261R mutant of podocin induced the weakest ubiquitination compared with the K301R and K370R mutants. As an E3 ligase, c-Cbl binds to podocin, and the regulation of c-Cbl can impact the ubiquitination of podocin. In conclusion, in DN, podocin ubiquitination contributes to podocyte injury, and K261R is the most significant site. c-Cbl participates in podocin ubiquitination and may be a direct target for preserving the integrity of the slit diaphragm structure, hence reducing proteinuria in DN.


Assuntos
Nefropatias Diabéticas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Podócitos , Proteínas Proto-Oncogênicas c-cbl , Ubiquitinação , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Podócitos/metabolismo , Podócitos/patologia , Camundongos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Camundongos Endogâmicos C57BL
2.
Diabetologia ; 67(7): 1429-1443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38676722

RESUMO

AIMS: Lactate accumulation is reported to be a biomarker for diabetic nephropathy progression. Lactate drives lysine lactylation, a newly discovered post-translational modification that is involved in the pathogenesis of cancers and metabolic and inflammatory disease. Here, we aimed to determine whether lysine lactylation is involved in the pathogenesis of diabetic nephropathy. METHODS: Renal biopsy samples from individuals with diabetic nephropathy (n=22) and control samples from individuals without diabetes and kidney disease (n=9) were obtained from the First Affiliated Hospital of Zhengzhou University for immunohistochemical staining. In addition, we carried out global lactylome profiling of kidney tissues from db/m and db/db mice using LC-MS/MS. Furthermore, we assessed the role of lysine lactylation and acyl-CoA synthetase family member 2 (ACSF2) in mitochondrial function in human proximal tubular epithelial cells (HK-2). RESULTS: The expression level of lysine lactylation was significantly increased in the kidneys of individuals with diabetes as well as in kidneys from db/db mice. Integrative lactylome analysis of the kidneys of db/db and db/m mice identified 165 upregulated proteins and 17 downregulated proteins, with an increase in 356 lysine lactylation sites and a decrease in 22 lysine lactylation sites decreased. Subcellular localisation analysis revealed that most lactylated proteins were found in the mitochondria (115 proteins, 269 sites). We further found that lactylation of the K182 site in ACSF2 contributes to mitochondrial dysfunction. Finally, the expression of ACSF2 was notably increased in the kidneys of db/db mice and individuals with diabetic nephropathy. CONCLUSIONS: Our study strongly suggests that lysine lactylation and ACSF2 are mediators of mitochondrial dysfunction and may contribute to the progression of diabetic nephropathy. DATA AVAILABILITY: The LC-MS/MS proteomics data have been deposited in the ProteomeXchange Consortium database ( https://proteomecentral.proteomexchange.org ) via the iProX partner repository with the dataset identifier PXD050070.


Assuntos
Nefropatias Diabéticas , Túbulos Renais , Lisina , Animais , Camundongos , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Lisina/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Coenzima A Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Lipoilação , Camundongos Endogâmicos C57BL , Feminino
3.
Adv Sci (Weinh) ; 11(10): e2305563, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145959

RESUMO

Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. Ferroptosis, a new form of cell death, plays a crucial role in the pathogenesis of DN. Renal tubular injury triggered by ferroptosis might be essential in this process. Numerous studies demonstrate that the vitamin D receptor (VDR) exerts beneficial effects by suppressing ferroptosis. However, the underlying mechanism has not been fully elucidated. Thus, they verified the nephroprotective effect of VDR activation and explored the mechanism by which VDR activation suppressed ferroptosis in db/db mice and high glucose-cultured proximal tubular epithelial cells (PTECs). Paricalcitol (PAR) is a VDR agonist that can mitigate kidney injury and prevent renal dysfunction. PAR treatment could inhibit ferroptosis of PTECs through decreasing iron content, increasing glutathione (GSH) levels, reducing malondialdehyde (MDA) generation, decreasing the expression of positive ferroptosis mediator transferrin receptor 1 (TFR-1), and enhancing the expression of negative ferroptosis mediators including ferritin heavy chain (FTH-1), glutathione peroxidase 4 (GPX4), and cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11). Mechanistically, VDR activation upregulated the NFE2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway to suppress ferroptosis in PTECs. These findings suggested that VDR activation inhibited ferroptosis of PTECs in DN via modulating the Nrf2/HO-1 signaling pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Animais , Camundongos , Células Epiteliais , Glutationa , Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Receptores de Calcitriol , Transdução de Sinais
4.
Comput Biol Med ; 166: 107480, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37738894

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes and a leading cause of chronic kidney disease worldwide. Urinary extracellular vesicles (uEVs), which are natural nanoscale vesicles that protect RNA from degradation, have the potential to serve as an invasive diagnostic biomarker for DN. METHODS: We enrolled 24 participants, including twelve with renal biopsy-proven T2DN and twelve with T2DM, and isolated uEVs using ultracentrifugation. We performed microarrays for mRNAs, lncRNAs, and circRNAs in parallel, and Next-Generation Sequencing for miRNAs. Differentially expressed RNAs (DE-RNAs) were subjected to CIBERSORTx, ssGSEA analysis, GO enrichment, PPI network analysis, and construction of the lncRNA/circRNA-miRNA-mRNA regulatory network. Candidate genes and potential biomarker RNAs were validated using databases and machine learning models. RESULTS: A total of 1684 mRNAs, 126 lncRNAs, 123 circRNAs and 66 miRNAs were found in uEVs in T2DN samples compared with T2DM. CIBERSORTx revealed the involvement of uEVs in immune activity and ssGSEA explored possible cell or tissue sources of uEVs. A ceRNA co-expression and regulation relationship network was constructed. Candidate genes MYO1C and SP100 mRNA were confirmed to be expressed in the kidney using Nephroseq database, scRNA-seq dataset, and Human Protein Atlas database. We further selected 2 circRNAs, 2 miRNAs, and 2 lncRNAs from WGCNAs and ceRNAs and demonstrated their efficacy as potential diagnostic biomarkers for T2DN using machine learning algorithms. CONCLUSIONS: This study reported, for the first time, the whole-transcriptome genetic resources found in urine extracellular vesicles of T2DN patients. The results provide additional support for the possible interactions, and regulators between RNAs from uEVs themselves and as potential biomarkers in DN.

5.
Int J Biol Sci ; 19(12): 3726-3743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564215

RESUMO

Ferroptosis is an iron-dependent programmed cell death pattern that is characterized by iron overload, reactive oxygen species (ROS) accumulation and lipid peroxidation. Growing viewpoints support that the imbalance of iron homeostasis and the disturbance of lipid metabolism contribute to tissue or organ injury in various kidney diseases by triggering ferroptosis. At present, the key regulators and complicated network mechanisms associated with ferroptosis have been deeply studied; however, its role in the initiation and progression of kidney diseases has not been fully revealed. Herein, we aim to discuss the features, key regulators and complicated network mechanisms associated with ferroptosis, explore the emerging roles of organelles in ferroptosis, gather its pharmacological progress, and systematically summarize the most recent discoveries about the crosstalk between ferroptosis and kidney diseases, including renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), autosomal dominant polycystic kidney disease (ADPKD), renal fibrosis, lupus nephritis (LN) and IgA nephropathy. We further conclude the potential therapeutic strategies by targeting ferroptosis for the prevention and treatment of kidney diseases and hope that this work will provide insight for the further study of ferroptosis in the pathogenesis of kidney-related diseases.


Assuntos
Injúria Renal Aguda , Nefropatias Diabéticas , Ferroptose , Neoplasias Renais , Humanos , Ferro , Peroxidação de Lipídeos
6.
Int J Biol Sci ; 19(9): 2678-2694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324941

RESUMO

Diabetic kidney disease (DKD) is one of the most common and severe microvascular complications of diabetes mellitus (DM), and has become the leading cause of end-stage renal disease (ESRD) worldwide. Although the exact pathogenic mechanism of DKD is still unclear, programmed cell death has been demonstrated to participate in the occurrence and development of diabetic kidney injury, including ferroptosis. Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, has been identified to play a vital role in the development and therapeutic responses of a variety of kidney diseases, such as acute kidney injury (AKI), renal cell carcinoma and DKD. In the past two years, ferroptosis has been well investigated in DKD patients and animal models, but the specific mechanisms and therapeutic effects have not been fully revealed. Herein, we reviewed the regulatory mechanisms of ferroptosis, summarized the recent findings associated with the involvement of ferroptosis in DKD, and discussed the potential of ferroptosis as a promising target for DKD treatment, thereby providing a valuable reference for basic study and clinical therapy of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Falência Renal Crônica , Neoplasias Renais , Animais , Nefropatias Diabéticas/metabolismo , Rim/metabolismo
7.
Am J Chin Med ; 51(4): 997-1018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37046368

RESUMO

Diabetic nephropathy (DN) is thought to be the major cause of end-stage renal disease. Due to its complicated pathogenesis and the low efficacy of DN treatment, a deep understanding of new etiological factors may be useful. Ferroptosis, a nonapoptotic form of cell death, is characterized by the accumulation of iron-dependent lipid peroxides to lethal levels. Ferroptosis-triggered renal tubular injury is reported to participate in the development of DN, and blocking ferroptosis might be an effective strategy to prevent the development of DN. Quercetin (QCT), a natural flavonoid that is present in a variety of fruits and vegetables, has been reported to ameliorate DN. However, its underlying nephroprotective mechanism is unclear. Herein, we explored the antiferroptosic effect of QCT and verified its nephroprotective effect using DN mice and high glucose (HG)-incubated renal tubular epithelial cell models. We found HG-induced abnormal activation of ferroptosis of renal tubular epithelial cells, and QCT treatment inhibited ferroptosis by downregulating the expression of transferrin receptor 1 (TFR-1) and upregulating the expression of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH-1), and the cystine/glutamate reverse antiporter solute carrier family 7 member (SLC7A11) in DN mice and HG-incubated HK-2 cells. Subsequently, both in vitro and in vivo results confirmed that QCT activated the NFE2-related factor 2 (Nrf2)/Heme oxygenase-1(HO-1) signaling pathway by increasing the levels of Nrf2 and HO-1. Therefore, this study supports that QCT inhibits the ferroptosis of renal tubular epithelial cells by regulating the Nrf2/HO-1 signaling pathway, providing a novel insight into the protective mechanism of QCT in DN treatment.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator 2 Relacionado a NF-E2 , Transdução de Sinais
8.
Exp Physiol ; 107(12): 1493-1506, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36056793

RESUMO

NEW FINDINGS: What is the central question of this study? Activation of the glycogen synthase kinase 3 ß (GSK-3ß)-hypoxia-inducible factor 1 α (HIF-1α) pathway results in stimulation of pyroptosis under high glucose, and exerts actions in a number renal diseases: does this pathway have a role in renal tubular epithelial cells? What is the main finding and its importance? Down-regulation of GSK-3ß can inhibit pyroptosis of renal tubular epithelial cells induced by high glucose and this may be related to down-regulation of HIF-1α. This role of the GSK-3ß-HIF-1α pathway has not previously been reported and identifies a potential new therapeutic target in diabetic nephropathy. ABSTRACT: Diabetic nephropathy (DN) is not only one of the main complications of diabetes, but also has a high incidence rate and a high mortality rate. Glycogen synthase kinase 3 ß (GSK-3ß) and hypoxia-inducible factor 1 α (HIF-1α) have been demonstrated to influence DN by regulating pyroptosis. This study aimed to investigate the effect of the GSK-3ß-HIF-1α pathway on pyroptosis of high-glucose (HG)-induced renal tubular cells. Mouse renal proximal tubular epithelial cells (TKPT cells) were induced by HG to simulate DN cell and we transfected TKPT cells with GSK-3ß knockdown lentivirus. Western blot analysis confirmed the transfection effects and detected the expression of GSK-3ß, HIF-1α, Nod-like receptor protein 3 (NLRP3), cleaved-caspase-1, pro-caspase-1, gasdermin D (GSDMD) and GSDMD-N. The expression of GSDMD-N and HIF-1α were also verified by immunofluorescence. The levels of interleukin (IL)-1ß and IL-18 were measured by enzyme linked immunosorbent assay. Flow cytometric analysis determined the apoptosis rate. Results showed that HIF-1α expression was increased in HG-induced TKPT cells, and GSK-3ß knockdown could decrease the levels of NLRP3, cleaved-caspase-1, GSDMD-N and HIF-1α, verified by immunofluorescence. Moreover, GSK-3ß knockdown suppressed the expression of IL-1ß and IL-18, and reduced the apoptosis rate. Lithium chloride (LiCl) interference could cause the same changes as GSK-3ß knockdown for HG-induced TKPT cells, and dimethyloxallyl glycine could reverse the effect of GSK-3ß-knockdown interference. Our studies definitively demonstrate that the GSK-3ß-HIF-1α signalling pathway mediates HG-stimulated pyroptosis in renal tubular epithelial cells and that down-regulation of GSK-3ß inhibited HG-induced pyroptosis by inhibiting the expression of HIF-1α. These findings suggest a new potential target for the treatment of DN.


Assuntos
Nefropatias Diabéticas , Piroptose , Animais , Camundongos , Caspases/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Células Epiteliais/metabolismo , Glucose/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
9.
Front Pharmacol ; 13: 858676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517803

RESUMO

Acute kidney injury (AKI), a common and serious clinical kidney syndrome with high incidence and mortality, is caused by multiple pathogenic factors, such as ischemia, nephrotoxic drugs, oxidative stress, inflammation, and urinary tract obstruction. Cell death, which is divided into several types, is critical for normal growth and development and maintaining dynamic balance. Ferroptosis, an iron-dependent nonapoptotic type of cell death, is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. Recently, growing evidence demonstrated the important role of ferroptosis in the development of various kidney diseases, including renal clear cell carcinoma, diabetic nephropathy, and AKI. However, the exact mechanism of ferroptosis participating in the initiation and progression of AKI has not been fully revealed. Herein, we aim to systematically discuss the definition of ferroptosis, the associated mechanisms and key regulators, and pharmacological progress and summarize the most recent discoveries about the role and mechanism of ferroptosis in AKI development. We further conclude its potential therapeutic strategies in AKI.

10.
Dis Markers ; 2022: 6085072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096203

RESUMO

The metabolic dysregulation is a hallmark of cancers including KIRC, specifically caused by alterations in metabolic genes. Currently, a lack of consensus exists between metabolic signatures in the tumor microenvironment. Here, in this study, we observed the significant correlations of differentially expressed metabolic genes (DEmGs) between KIRC and the related normal samples. Briefly, we collected sets of metabolic genes through RNA-seq data of KIRC and normal tissues from TCGA, followed by the identification of KIRC-related DEmGs. Next, patients were classified into three clusters, and using WGCNA, we identified metabolic genes involved in the survival among different clusters. Furthermore, we investigated survival and clinical parameters along with immune infiltration in the clusters. At the same time, we constructed and validated a prediction model based on these DEmGs. These analyses revealed that the patients having high expression of DEmGs showed poor survival, while infiltration of less-immune cells was associated with the metastasis of KIRC. In the end, we identified NUDT1 as a hub gene as it showed significantly high expression in KIRC samples as well as associated with the survival and prognosis of the patients. Further analysis revealed the oncogenic role of NUDT1 in 786-O and ACHN cells. Thus, we conclude that NUDT1 could be a potential diagnostic and prognostic marker for KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Rim/metabolismo , Neoplasias Renais/patologia , Microambiente Tumoral/genética
11.
Cell Death Dis ; 12(3): 255, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692334

RESUMO

Diabetic nephropathy (DN) is a serious complication in type 1 and type 2 diabetes, and renal interstitial fibrosis plays a key role in DN progression. Here, we aimed to probe into the role and potential mechanism of miR-483-5p in DN-induced renal interstitial fibrosis. In this study, we corroborated that miR-483-5p expression was lessened in type 1 and type 2 diabetic mice kidney tissues and high glucose (HG)-stimulated tubular epithelial cells (TECs), and raised in the exosomes derived from renal tissues in type 1 and type 2 diabetic mice. miR-483-5p restrained the expressions of fibrosis-related genes in vitro and renal interstitial fibrosis in vivo. Mechanistically, miR-483-5p bound both TIMP2 and MAPK1, and TIMP2 and MAPK1 were bound up with the regulation of miR-483-5p on renal TECs under HG conditions. Importantly, HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine. Our results expounded that HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine, thus lessening the restraint of cellular miR-483-5p on MAPK1 and TIMP2 mRNAs, and ultimately boosting extracellular matrix deposition and the progression of DN-induced renal interstitial fibrosis.


Assuntos
Nefropatias Diabéticas/metabolismo , Células Epiteliais/metabolismo , Exossomos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Túbulos Renais/metabolismo , MicroRNAs/metabolismo , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Progressão da Doença , Células Epiteliais/patologia , Exossomos/genética , Fibrose , Regulação da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/urina , Humanos , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transporte Proteico , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo
12.
Aging (Albany NY) ; 13(6): 8467-8480, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33714195

RESUMO

Diabetic nephropathy is a lethal disease that can lead to chronic kidney disease and end-stage kidney disease. Exosomes, which are nanosized extracellular vesicles, are closely involved in intercellular communication. Most importantly, exosomes play critical roles in disease occurrence and development. However, the function of exosomes in diabetic nephropathy progression has not been fully elucidated. In the present study, we determined the expression profiles and differences of lncRNAs, mRNAs, circRNAs and miRNAs in exosomes derived from human renal tubular epithelial cells with or without high glucose (HG) treatment. A total of 169 lncRNAs, 885 mRNAs, 3 circRNAs and 152 miRNAs were differentially expressed in exosomes secreted by HG-challenged HK-2 cells (HG group) compared with controls (NC group). The functions of differentially expressed mRNAs, mRNAs colocalized or coexpressed with differentially expressed lncRNAs (DElncRNAs), potential target genes of miRNAs and source genes of circRNAs were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. According to these differentially expressed RNAs, we established an integrated circRNA-lncRNA-miRNA-mRNA regulatory network. In conclusion, our study suggested that exosomal lncRNAs, mRNAs, circRNAs and miRNAs participate in the progression of diabetic nephropathy and may be possible biomarkers and therapeutic targets in diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Glucose/toxicidade , Túbulos Renais/metabolismo , RNA/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Exossomos/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Túbulos Renais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/fisiologia
13.
Cell Death Dis ; 11(11): 1000, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33221823

RESUMO

Diabetic nephropathy, with high prevalence, is the main cause of renal failure in diabetic patients. The strategies for treating DN are limited with not only high cost but an unsatisfied effect. Therefore, the effective treatment of DN needs to be explored urgently. In recent years, due to their self-renewal ability and multi-directional differentiation potential, stem cells have exerted therapeutic effects in many diseases, such as graft-versus-host disease, autoimmune diseases, pancreatic diseases, and even acute kidney injury. With the development of stem cell technology, stem cell-based regenerative medicine has been tried to be applied to the treatment of DN. Related stem cells include embryonic stem cells, induced pluripotent stem cells, mesenchymal cells, and endothelial progenitor cells. Undoubtedly, stem cell transplantation has achieved certain results in the treatment of DN animal models. However, stem cell therapy still remains certain thorny issues during treatment. For instance, poor engraftment and limited differentiation of stem cells caused by the diabetic microenvironment, differentiation into unwanted cell lineages, and malignant transformation or genetic aberrations of stem cells. At present, various researches on the therapeutic effects of stem cells in DN with different opinions are reported and the specific mechanism of stem cells is still unclear. We review here the potential mechanism of stem cells as new therapeutic agents in the treatment of DN. Also, we review recent findings and updated information about not only the utilization of stem cells on DN in both preclinical and clinical trials but limitations and future expectations of stem cell-based therapy for DN.


Assuntos
Nefropatias Diabéticas/fisiopatologia , Insuficiência Renal Crônica/complicações , Células-Tronco/metabolismo , Humanos
14.
Cancer Manag Res ; 12: 11783-11791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33235506

RESUMO

PURPOSE: To develop and validate a nomogram model to predict the occurrence of acute kidney disease (AKD) after nephrectomy. PATIENTS AND METHODS: A retrospective cohort including 378 patients with renal cell carcinoma (RCC) who had undergone radical or partial nephrectomy between March 2013 and December 2017 at the First Affiliated Hospital of Zhengzhou University was analyzed. Of these, patients who had undergone surgery in an earlier period of time formed the training cohort (n=265) for nomogram development, and those who had undergone surgery thereafter formed the validation cohort (n=113) to confirm the model's performance. The incidence rate of AKD was measured. Univariate and multivariate logistics regression analysis was used to estimate the independent risk factors associated with AKD. The independent risk factors were incorporated into the nomogram. The accuracy and utility of the nomogram were evaluated by calibration curve and decision curve analysis, respectively. RESULTS: Overall, AKD occurred in 27.5% and 28.3% of patients in the training and validation cohorts, separately. The final nomogram included surgery approach, Charlson comorbidity index (CCI), and the decrement of eGFR. This model achieved good concordance indexes of 0.78 (95% CI=0.71-0.84) and 0.76 (95% CI=0.67-0.86) in the training and validation cohorts, respectively. The calibration curves and decision curve analysis (DCA) demonstrated the accuracy and the clinical usefulness of the proposed nomogram, separately. CONCLUSION: The nomogram accurately predicts AKD after nephrectomy in patients with RCC. The risk for patients' progress into AKD can be determined, which is useful in guiding clinical decisions.

15.
Stem Cell Res Ther ; 11(1): 249, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32586408

RESUMO

The prevalence of kidney diseases is emerging as a public health problem. Stem cells (SCs), currently considered as a promising tool for therapeutic application, have aroused considerable interest and expectations. With self-renewal capabilities and great potential for proliferation and differentiation, stem cell therapy opens new avenues for the development of renal function and structural repair in kidney diseases. Mounting evidence suggests that stem cells exert a therapeutic effect mainly by replacing damaged tissues and paracrine pathways. The benefits of various types of SCs in acute kidney disease and chronic kidney disease have been demonstrated in preclinical studies, and preliminary results of clinical trials present its safety and tolerability. This review will focus on the stem cell-based therapy approaches for the treatment of kidney diseases, including various cell sources used, possible mechanisms involved, and outcomes that are generated so far, along with prospects and challenges in clinical application.


Assuntos
Rim , Insuficiência Renal Crônica , Diferenciação Celular , Humanos , Insuficiência Renal Crônica/terapia , Transplante de Células-Tronco
16.
BMC Nephrol ; 21(1): 115, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245423

RESUMO

BACKGROUND: This study was conducted to evaluate and update the current prevalence of and risk factors for chronic kidney disease (CKD) and diabetic kidney disease (DKD) in a central Chinese urban population. METHODS: From December 2017 to June 2018, a total of 5231 subjects were randomly enrolled from 3 communities in 3 districts of Zhengzhou. CKD was defined as estimated glomerular filtration rate (eGFR) < 60 mL/min.1.73m2 or urinary albumin to creatinine ratio ≥ 30 mg/g (albuminuria). Diabetic subjects with systolic blood pressure > 140 mmHg, albuminuria or an eGFR less than 60 mL/min/1.73 m2 were classified as having DKD. Participants completed a questionnaire assessing lifestyle and relevant medical history, and blood and urine specimens were taken. Serum creatinine, uric acid, total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein and urinary albumin were assessed. The age- and sex-adjusted prevalences of CKD and DKD were calculated, and risk factors associated with the presence of reduced eGFR, albuminuria, DKD, severity of albuminuria and progression of reduced renal function were analyzed by binary and ordinal logistic regression. RESULTS: The overall adjusted prevalence of CKD was 16.8% (15.8-17.8%) and that of DKD was 3.5% (3.0-4.0%). Decreased renal function was detected in 132 participants (2.9, 95% confidence interval [CI]: 2.5-3.2%), whereas albuminuria was found in 858 participants (14.9, 95% CI: 13.9-15.9%). In all participants with diabetes, the prevalence of reduced eGFR was 6.3% (95% CI = 3.9-8.6%) and that of albuminuria was 45.3% (95% CI = 40.4-50.1%). The overall prevalence of CKD in participants with diabetes was 48.0% (95% CI = 43.1-52.9%). The results of the binary and ordinal logistic regression indicated that the factors independently associated with a higher risk of reduced eGFR and albuminuria were older age, sex, smoking, alcohol consumption, overweight, obesity, diabetes, hypertension, dyslipidemia and hyperuricemia. CONCLUSIONS: Our study shows the current prevalence of CKD and DKD in residents of Central China. The high prevalence suggests an urgent need to implement interventions to relieve the high burden of CKD and DKD in China.


Assuntos
Nefropatias Diabéticas , Insuficiência Renal Crônica , China/epidemiologia , Creatinina/análise , Estudos Transversais , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/epidemiologia , Feminino , Taxa de Filtração Glomerular , Humanos , Testes de Função Renal/métodos , Testes de Função Renal/estatística & dados numéricos , Estilo de Vida , Masculino , Anamnese/estatística & dados numéricos , Pessoa de Meia-Idade , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Medição de Risco , Fatores de Risco , População Urbana
17.
Exp Mol Med ; 51(8): 1-15, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371698

RESUMO

The number of patients with diabetic nephropathy (DN) is still on the rise worldwide, and this requires the development of new therapeutic strategies. Recent reports have highlighted genetic factors in the treatment of DN. Herein, we aimed to study the roles of long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) and histone 3 lysine 27 trimethylation (H3K27me3) in DN. A model of DN was established by inducing diabetes in mice with streptozotocin. Mouse podocyte clone 5 (MPC5) podocytes and primary podocytes were cultured in normal and high glucose media to observe cell morphology and to quantify PVT1 expression. The roles of PVT1 and enhancer of zeste homolog 2 (EZH2) were validated via loss-of-function and gain-of-function in vitro experiments to identify the interactions among PVT1, EZH2, and forkhead box A1 (FOXA1). The podocyte damage and apoptosis due to PVT1 and FOXA1 were verified with in vivo experiments. PVT1 was highly expressed in MPC5 and primary podocytes in DN patients and in cultures grown in high glucose medium. A large number of CpG (C-phosphate-G) island sites were predicted at the FOXA1 promoter region, where PVT1 recruited EZH2 to promote the recruitment of H3K27me3. The silencing of PVT1 or the overexpression of FOXA1 relieved the damage and inhibited the apoptosis of podocytes in DN, as was evidenced by the upregulated expression of synaptopodin and podocin, higher expression of Bcl-2, and lower expression of Bax and cleaved caspase-3. The key findings of this study collectively indicate that the suppression of lncRNA PVT1 exerts inhibitory effects on podocyte damage and apoptosis via FOXA1 in DN, which is of clinical significance.


Assuntos
Apoptose/genética , Nefropatias Diabéticas/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Podócitos/fisiologia , Interferência de RNA , RNA Longo não Codificante/genética , Adulto , Idoso , Animais , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Podócitos/metabolismo , Podócitos/patologia , Regulação para Cima/genética
19.
Cell Cycle ; 17(21-22): 2484-2495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30394845

RESUMO

Podocyte apoptosis is considered as the important element that promotes the development and progress of membranous nephropathy (MN). Unfortunately, the underlying mechanism of podocytes apoptosis in MN remains elusive. We compared the renal expressions of miR-130a-5p and M-type phospholipase A2 receptor (PLA2R) between MN patients (n = 30) and 30 controls by qRT-PCR and western blot, respectively. The podocyte damage model in vitro was established by angiotensin II (Ang II, 100 nmol/L) exposure for 24 h. Interaction between miR-130a-5p and PLA2R was determined using dual-luciferase reporter gene assay. MN mice were induced by intravenous injection of cBSA. In this study, miR-130a-5p expression was significantly decreased both in the renal biopsy specimens from MN patients and podocyte cell line AB8/13 following stimulation of Ang II. Overexpressed miR-130a-5p in AB8/13 cells significantly attenuated the Ang II induced-apoptosis in vitro. In contrast, down-regulated miR-130a-5p induced podocyte apoptosis. PLA2R was identified as the target of miR-130a-5p in AB8/13 cells. And up-regulated or down-regulated PLA2R could obviously attenuate the effect of miR-130a-5p overexpression or knockdown on the apoptosis of AB8/13 cells. Furthermore, it was also observed that overexpressed miR-130a-5p by miR-130a-5p agomir could obviously alleviate renal injury in MN mice. In conclusion, decreased miR-130a-5p was contributed to the pathological mechanism of MN through increasing PLA2R expression, which induced podocyte apoptosis.


Assuntos
Angiotensina II/toxicidade , Apoptose/efeitos dos fármacos , Glomerulonefrite Membranosa/metabolismo , MicroRNAs/metabolismo , Podócitos/efeitos dos fármacos , Receptores da Fosfolipase A2/metabolismo , Animais , Antagomirs/farmacologia , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Feminino , Glomerulonefrite Membranosa/genética , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/prevenção & controle , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Podócitos/metabolismo , Podócitos/patologia , Receptores da Fosfolipase A2/genética , Transdução de Sinais/efeitos dos fármacos
20.
Chin Med J (Engl) ; 131(22): 2734-2740, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30425200

RESUMO

BACKGROUND: Type 2 diabetes (T2DM) patients are susceptible to Helicobacter pylori (HP), and it has been reported that the occurrence of proteinuria is associated with HP infection in T2DM patients; however, this view remains controversial. This meta-analysis aimed to explore the association between HP infection and the occurrence of proteinuria in T2DM patients. In addition, we hope to provide some recommendations to readers in clinical or related fields. METHODS: Our meta-analysis was conducted with the methodology of the Cochrane Collaboration. Search strategies were formulated by relevant professionals. Case-control studies that compared the occurrence of proteinuria in T2DM patients with and without HP infection were involved in our meta-analysis. Relevant English or Chinese studies were searched on online databases before 2018, including PubMed, the Cochrane library, Medline, Google Scholar, the China National Infrastructure, and Wanfang database. The search strategies were "diabetic proteinuria, diabetic microalbuminuria, diabetic albuminuria, diabetic kidney disease, diabetic renal dysfunction, diabetic renal disease, diabetic nephropathy, diabetic complications, and diabetic mellitus, combined with HP." The quality of these involved articles was separately assessed by two investigators using the Newcastle-Ottawa Scale (NOS). Odds ratios (ORs) and associated 95% confidence intervals (CIs) were extracted and pooled using fixed-effects models. RESULTS: Seven studies involving 1029 participants were included. The quality of these seven articles was all above five stars as assessed by NOS, and there was no significant publication bias in our meta-analysis. We found that T2DM patients with HP infection had a 2.00 times higher risk of the occurrence of proteinuria than patients without HP infection (OR: 2.00, 95% CI: 1.48-2.69). CONCLUSIONS: Our analysis showed that HP infection was associated with the occurrence of proteinuria in T2DM patients. HP radical surgery might be a therapeutic option for protecting kidney function in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Intervalos de Confiança , Humanos , Rim/metabolismo , Proteinúria/metabolismo , Proteinúria/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA