Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38632037

RESUMO

OBJECTIVE: Oral submucous fibrosis (OSF) is a chronic, insidious, progressive mucosal disease that may be affected by mutations in the Wnt/ß-catenin signaling pathway. Panax notoginseng saponins (PNS) is a powerful anti-fibrosis agent; however, its effect and mechanism in treating OSF remain unclear. This study investigated the effect and mechanism of PNS treatment for OSF. STUDY DESIGN: Arecoline was used to induce OSF models in vivo and in vitro, which were then treated with PNS. Hematoxylin-eosin (HE) and Masson trichrome staining were used to observe histopathology changes; E-cadherin and ß-catenin were detected by Immunohistochemical assay, and type Ⅰ collagen (CollA1) and ß-catenin were detected by immunofluorescent staining. The Wnt/ß-catenin pathway and fibrosis signs were assessed using Western Blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The expression of CollA1, Wnt1, and ß-catenin were increased, and E-cadherin, GSK-3ß, and ß-catenin expression were decreased in OSF models. PNS and inhibitor intervention increased E-cadherin, Wnt1, and ß-catenin and decreased CollA1 and GSK-3ß in a dose-dependent manner. CONCLUSION: PNS can improve OSF by inhibiting the Wnt/ß-catenin signal pathway and thus may be used as a potential medicine for the treatment of OSF.

2.
Curr Cancer Drug Targets ; 20(6): 461-470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271695

RESUMO

BACKGROUND: Emerging studies have indicated that circular RNAs (circRNAs) play important roles in the development of many tumors. CircRNA-scavenger receptor class B member 1 (Circ-SCARB1) was consistently reported as an elevated circRNA in RCC tissues. This study focused on examining the biological function and molecular mechanism of circSCARB1 in RCC progression. METHODS: Expressions of Circ-SCARB1, microRNA (miR)-510-5p, and syndecan 3 (SDC3) were detected using a quantitative real-time polymerase chain reaction (RT-PCR) and/or western blot. Cell proliferation and apoptosis were measured by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-diphenytetrazoliumromide and flow cytometry, respectively. Cell migration and invasion were measured using Transwell assays. The interaction between miR-510-5p and Circ-SCARB1 or SDC3 was verified using dual-luciferase reporter assays. RESULTS: Circ-SCARB1 was elevated in 30 pairs of RCC tissues and multiple RCC cell lines. Knockdown of Circ-SCARB1 inhibited cell proliferation, migration, and invasion while inducing cell apoptosis. MiR-510-5p was confirmed to be a target of Circ-SCARB1; inhibition of cell progression by silencing Circ-SCARB1 was mediated by a direct interaction between Circ-SCARB1 and miR-510-5p. SDC3 was verified to be a gene target of miR-510-5p; transfection of miR-510-5p mimic not only suppressed the expression of SDC3 but also the cell proliferation and an SDC3 cotransfection partially restored cell proliferation. Additionally, the genetic knockdown of Circ- SCARB1 reduced the expression SDC3, and the addition of anti-miR-510-5p could partially reelevate SDC3 expression. CONCLUSION: Circ-SCARB1 promotes RCC progression via sequestering miR-510-5p and indirectly up-regulating SDC3 expression. This provides a novel perspective for the pathogenesis of RCC and potential therapeutic targets for the treatment of RCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Circular/genética , Receptores Depuradores Classe B/genética , Sindecana-3/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proliferação de Células , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Prognóstico , Sindecana-3/genética , Células Tumorais Cultivadas
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 25(8): 1008-13, 2011 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-21923036

RESUMO

OBJECTIVE: To review the research status of the neovascularization of adipose tissue engineering in the past decade so as to provide theoretical references for the development of the rapid revascularization of tissue engineered adipose. METHODS: The literature about the revascularization of adipose tissue engineering was extensively reviewed and analyzed, centering on 5 elements: specificity of histological structures and blood supply, revascularization mechanism, coculture of different seed cells, modification of scaffold, and microenvironment. RESULTS: Adipose tissue engineering offers a new solution for soft tissue defects. However, there is still the unfulfilled need in the size of engineered adipose tissue (less than 1 mL), which was determined by the degree of neovascularization in engineered tissue. Overall, rapid neovascularization in engineering tissue is a key link of experimental study changing into clinical application. CONCLUSION: Providing a sufficient supply with nutrients and oxygen by means of a sufficient and rapid neovascularization will be at the heart of any attempts to obtain bigger tissue engineered adipose to meet the demand of repairing large soft tissue defect.


Assuntos
Tecido Adiposo/irrigação sanguínea , Engenharia Tecidual/métodos , Alicerces Teciduais , Adipócitos/citologia , Tecido Adiposo/citologia , Humanos , Neovascularização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA