Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11824, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821229

RESUMO

Particulate Guanylyl Cyclase Receptor A (pGC-A) is a natriuretic peptide membrane receptor, playing a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop methods to regulate pGC-A, structural information on the full-length form is needed. However, structural data on the transmembrane and intracellular domains are lacking. This work presents expression and optimization using baculovirus, along with the first purification of functional full-length human pGC-A. In vitro assays revealed the pGC-A tetramer was functional in detergent micelle solution. Based on our purification results and previous findings that dimer formation is required for functionality, we propose a tetramer complex model with two functional subunits. Previous research suggested pGC-A signal transduction is an ATP-dependent, two-step mechanism. Our results show the binding ligand also moderately activates pGC-A, and ATP is not crucial for activation of guanylyl cyclase. Furthermore, crystallization of full-length pGC-A was achieved, toward determination of its structure. Needle-shaped crystals with 3 Å diffraction were observed by serial crystallography. This work paves the road for determination of the full-length pGC-A structure and provides new information on the signal transduction mechanism.


Assuntos
Guanilato Ciclase , Receptores do Fator Natriurético Atrial , Trifosfato de Adenosina/metabolismo , Cristalografia , Poeira , Guanilato Ciclase/metabolismo , Humanos , Receptores do Fator Natriurético Atrial/metabolismo , Receptores Acoplados a Guanilato Ciclase
2.
J Mol Cell Cardiol ; 130: 140-150, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30954448

RESUMO

The native particulate guanylyl cyclase B receptor (pGC-B) activator, C-type natriuretic peptide (CNP), induces anti-remodeling actions in the heart and kidney through the generation of the second messenger 3', 5' cyclic guanosine monophosphate (cGMP). Indeed fibrotic remodeling, particularly in cardiorenal disease states, contributes to disease progression and thus, has been a key target for drug discovery and development. Although the pGC-B/cGMP system has been perceived as a promising anti-fibrotic pathway, its therapeutic potential is limited due to the rapid degradation and catabolism of CNP by neprilysin (NEP) and natriuretic peptide clearance receptor (NPRC). The goal of this study was to bioengineer and test in vitro and in vivo a novel pGC-B activator, C53. Here we established that C53 selectively generates cGMP via the pGC-B receptor and is highly resistant to NEP and has less interaction with NPRC in vitro. Furthermore in vivo, C53 had enhanced cGMP-generating actions that paralleled elevated plasma CNP-like levels, thus indicating a longer circulating half-life compared to CNP. Importantly in human cardiac fibroblasts (HCFs) and renal fibroblasts (HRFs), C53 exerted robust cGMP-generating actions, inhibited TGFß-1 stimulated HCFs and HRFs proliferation chronically and suppressed the differentiation of HCFs and HRFs to myofibroblasts. The current findings advance innovation in drug discovery and highlight C53 as a novel pGC-B activator with sustained in vivo activity and anti-fibrotic actions in vitro. Future studies are warranted to explore the efficacy and therapeutic opportunity of C53 targeting fibrosis in cardiorenal disease states and beyond.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibroblastos/metabolismo , Rim/metabolismo , Miocárdio/metabolismo , Sistemas do Segundo Mensageiro , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Ciclo Celular/genética , GMP Cíclico/genética , GMP Cíclico/metabolismo , Fibroblastos/patologia , Fibrose , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Rim/patologia , Masculino , Miocárdio/patologia , Ratos , Ratos Endogâmicos F344 , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Hypertension ; 73(4): 900-909, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30798663

RESUMO

Despite optimal current therapies, cardiovascular disease remains the leading cause for death worldwide. Importantly, advances in peptide engineering have accelerated the development of innovative therapeutics for diverse human disease states. Additionally, the advancement of bispecific therapeutics targeting >1 signaling pathway represents a highly innovative strategy for the treatment of cardiovascular disease. We, therefore, engineered a novel, designer peptide, which simultaneously targets the pGC-A (particulate guanylyl cyclase A) receptor and the MasR (Mas receptor), potentially representing an attractive cardiorenoprotective therapeutic for cardiovascular disease. We engineered a novel, bispecific receptor activator, NPA7, that represents the fusion of a 22-amino acid sequence of BNP (B-type natriuretic peptide; an endogenous ligand of pGC-A) with Ang 1-7 (angiotensin 1-7)-the 7-amino acid endogenous activator of MasR. We assessed NPA7's dual receptor activating actions in vitro (second messenger production and receptor interaction). Further, we performed an intravenous peptide infusion comparison study in normal canines to study its biological actions in vivo, including in the presence of an MasR antagonist. Our in vivo and in vitro studies demonstrate the successful synthesis of NPA7 as a bispecific receptor activator targeting pGC-A and MasR. In normal canines, NPA7 possesses enhanced natriuretic, diuretic, systemic, and renal vasorelaxing and cardiac unloading properties. Importantly, NPA7's actions are superior to that of the individual native pGC-A or MasR ligands. These studies advance NPA7 as a novel, bispecific designer peptide with potential cardiorenal therapeutic benefit for the treatment of cardiovascular disease, such as hypertension and heart failure.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Desenho de Fármacos , Hipertensão/tratamento farmacológico , Oligopeptídeos/farmacologia , Resistência Vascular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Cães , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Proto-Oncogene Mas
4.
Am J Physiol Regul Integr Comp Physiol ; 314(3): R407-R414, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187381

RESUMO

The natriuretic peptides (NPs) B-type NP (BNP) and urodilatin (URO) exert renal protective properties via the particulate guanylyl cyclase A receptor (pGC-A). As a potential renal-enhancing strategy, we engineered a novel designer peptide that we call CRRL269. CRRL269 was investigated in human cell lines and in normal canines to define potential cardiorenal enhancing actions. The mechanism of its cardiorenal selective properties was also investigated. In vitro NP receptor activity was quantified with guanosine 3',5'-cyclic monophosphate generation. In vivo effects were determined in normal canine acute infusion studies. We observed that CRRL269 demonstrated enhanced pGC-A activity in renal compared with nonrenal cell lines. CRRL269 exerted enhanced resistance to neprilysin compared with URO. Importantly, CRRL269 exhibited significant and greater increases in urinary sodium excretion and diuresis, with less blood pressure reduction, than BNP or URO in normal canines. CRRL269 retained potent renin-angiotensin-aldosterone system (RAAS) suppressing properties shared by URO and BNP. Also, CRRL269 exerted less arterial relaxation and higher cAMP cardiomyocytes generation than BNP. CRRL269 possessed superior renal and pGC-A activating properties compared with BNP or URO in vitro. CRRL269 exerted enhanced renal actions while suppressing RAAS in vivo and with less hypotension compared with URO or BNP. Together, our study suggests that CRRL269 is a promising innovative renal-enhancing drug, with favorable protective actions targeting cardiorenal disease states through the pGC-A receptor.


Assuntos
Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Desenho de Fármacos , Rim/efeitos dos fármacos , Peptídeo Natriurético Encefálico/farmacologia , Oligopeptídeos/farmacologia , Receptores do Fator Natriurético Atrial/agonistas , Animais , Fator Natriurético Atrial/farmacologia , Pressão Sanguínea/efeitos dos fármacos , GMP Cíclico/metabolismo , Diuréticos/síntese química , Cães , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Células HEK293 , Humanos , Rim/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Natriurese/efeitos dos fármacos , Peptídeo Natriurético Encefálico/química , Neprilisina/farmacologia , Oligopeptídeos/química , Fragmentos de Peptídeos/farmacologia , Receptores do Fator Natriurético Atrial/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/síntese química , Vasodilatadores/farmacologia
5.
Circ Res ; 115(3): 364-75, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24906644

RESUMO

RATIONALE: Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. OBJECTIVE: We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. METHODS AND RESULTS: Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. CONCLUSIONS: The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage progenitors in other tissues.


Assuntos
Túnica Adventícia/citologia , Aterosclerose/patologia , Linhagem Celular/imunologia , Macrófagos/citologia , Células-Tronco/citologia , Transferência Adotiva , Túnica Adventícia/imunologia , Animais , Antígenos Ly/metabolismo , Aorta/citologia , Aorta/imunologia , Apolipoproteínas E/genética , Aterosclerose/imunologia , Feminino , Hiperlipidemias/imunologia , Hiperlipidemias/patologia , Imunofenotipagem , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/metabolismo , Macrófagos/transplante , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Baço/citologia , Células-Tronco/imunologia
6.
Arterioscler Thromb Vasc Biol ; 32(3): 704-11, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22223730

RESUMO

OBJECTIVE: Tissue factor pathway inhibitor (TFPI) is the primary regulator of the tissue factor (TF) coagulation pathway. As such, TFPI may regulate the proangiogenic effects of TF. TFPI may also affect angiogenesis independently of TF, through sequences within its polybasic carboxyl terminus (TFPI C terminus [TFPIct]). We aimed to determine the effects of TFPI on angiogenesis and the role of TFPIct. METHODS AND RESULTS: Transgenic overexpression of TFPI attenuated angiogenesis in the murine hindlimb ischemia model and an aortic sprout assay. In vitro, TFPI inhibited endothelial cell migration. Peptides within the human TFPIct inhibited endothelial cell cord formation and migration in response to vascular endothelial growth factor (VEGF) 165 but not VEGF121. Furthermore, exposure to human TFPIct inhibited the phosphorylation of VEGF receptor 2 at residue Lys951, a residue known to be critical for endothelial cell migration. Finally, systemic delivery of a murine TFPIct peptide inhibited angiogenesis in the hindlimb model. CONCLUSION: These data demonstrate an inhibitory role for TFPI in angiogenesis that is, in part, mediated through peptides within its carboxyl terminus. In addition to its known role as a TF antagonist, TFPI, via its carboxyl terminus, may regulate angiogenesis by directly blocking VEGF receptor 2 activation and attenuating the migratory capacity of endothelial cells.


Assuntos
Inibidores da Angiogênese/metabolismo , Isquemia/metabolismo , Lipoproteínas/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Inibidores da Angiogênese/química , Inibidores da Angiogênese/deficiência , Inibidores da Angiogênese/genética , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação , Movimento Celular , Modelos Animais de Doenças , Heparina/metabolismo , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Lipoproteínas/química , Lipoproteínas/deficiência , Lipoproteínas/genética , Lipoproteínas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/farmacologia , Fosforilação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Fatores de Tempo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Circulation ; 125(4): 592-603, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22203692

RESUMO

BACKGROUND: Hematopoiesis originates from the dorsal aorta during embryogenesis. Although adult blood vessels harbor progenitor populations for endothelial and smooth muscle cells, it is not known if they contain hematopoietic progenitor or stem cells. Here, we hypothesized that the arterial wall is a source of hematopoietic progenitor and stem cells in postnatal life. METHODS AND RESULTS: Single-cell aortic disaggregates were prepared from adult chow-fed C57BL/6 and apolipoprotein E-null (ApoE(-/-)) mice. In short- and long-term methylcellulose-based culture, aortic cells generated a broad spectrum of multipotent and lineage-specific hematopoietic colony-forming units, with a preponderance of macrophage colony-forming units. This clonogenicity was higher in lesion-free ApoE(-/-) mice and localized primarily to stem cell antigen-1-positive cells in the adventitia. Expression of stem cell antigen-1 in the aorta colocalized with canonical hematopoietic stem cell markers, as well as CD45 and mature leukocyte antigens. Adoptive transfer of labeled aortic cells from green fluorescent protein transgenic donors to irradiated C57BL/6 recipients confirmed the content of rare hematopoietic stem cells (1 per 4 000 000 cells) capable of self-renewal and durable, low-level reconstitution of leukocytes. Moreover, the predominance of long-term macrophage precursors was evident by late recovery of green fluorescent protein-positive colonies from recipient bone marrow and spleen that were exclusively macrophage colony-forming units. Although trafficking from bone marrow was shown to replenish some of the hematopoietic potential of the aorta after irradiation, the majority of macrophage precursors appeared to arise locally, suggesting long-term residence in the vessel wall. CONCLUSIONS: The postnatal murine aorta contains rare multipotent hematopoietic progenitor/stem cells and is selectively enriched with stem cell antigen-1-positive monocyte/macrophage precursors. These populations may represent novel, local vascular sources of inflammatory cells.


Assuntos
Aorta/citologia , Aorta/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Monócitos/citologia , Transferência Adotiva , Animais , Antígenos Ly/metabolismo , Apolipoproteínas E/genética , Biomarcadores/metabolismo , Transplante de Medula Óssea , Linhagem da Célula/imunologia , Endotélio Vascular/citologia , Endotélio Vascular/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Imunofenotipagem , Macrófagos/citologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/imunologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/crescimento & desenvolvimento , Quimeras de Transplante , Irradiação Corporal Total
8.
Proc Natl Acad Sci U S A ; 106(27): 11282-7, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541613

RESUMO

Alternative RNA splicing may provide unique opportunities to identify drug targets and therapeutics. We identified an alternative spliced transcript for B-type natriuretic peptide (BNP) resulting from intronic retention. This transcript is present in failing human hearts and is reduced following mechanical unloading. The intron-retained transcript would generate a unique 34 amino acid (aa) carboxyl terminus while maintaining the remaining structure of native BNP. We generated antisera to this carboxyl terminus and identified immunoreactivity in failing human heart tissue. The alternatively spliced peptide (ASBNP) was synthesized and unlike BNP, failed to stimulate cGMP in vascular cells or vasorelax preconstricted arterial rings. This suggests that ASBNP may lack the dose-limiting effects of recombinant BNP. Given structural considerations, a carboxyl-terminal truncated form of ASBNP was generated (ASBNP.1) and was determined to retain the ability of BNP to stimulate cGMP in canine glomerular isolates and cultured human mesangial cells but lacked similar effects in vascular cells. In a canine-pacing model of heart failure, systemic infusion of ASBNP.1 did not alter mean arterial pressure but increased the glomerular filtration rate (GFR), suppressed plasma renin and angiotensin, while inducing natriuresis and diuresis. Consistent with its distinct in vivo effects, the activity of ASBNP.1 may not be explained through binding and activation of NPR-A or NPR-B. Thus, the biodesigner peptide ASBNP.1 enhances GFR associated with heart failure while lacking the vasoactive properties of BNP. These findings demonstrate that peptides with unique properties may be designed based on products of alternatively splicing.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Desenho de Fármacos , Rim/efeitos dos fármacos , Peptídeo Natriurético Encefálico/genética , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Bovinos , Cães , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Dados de Sequência Molecular , Peptídeo Natriurético Encefálico/química , Peptídeo Natriurético Encefálico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 286(6): H2213-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14962842

RESUMO

Dendroaspis natriuretic peptide (DNP) is a recently described peptide produced by Dendroaspis angusticeps with structural and functional similarities to mammalian natriuretic peptides. These similarities suggest a potential role for DNP in cardiovascular therapeutics. To determine the physiological effects of chronic delivery of DNP, a gene transfer approach using first generation adenoviral vectors was utilized. Although the gene for DNP has not been cloned in any species, the peptide sequence in the snake is known. Preferred mammalian codons for snake DNP were cloned downstream of either the leader sequence (referred to as pBDNP-1) or prepropeptide sequence of human brain natriuretic peptide (BNP) cDNA (referred to as pBDNP-2). Transfections with pBDNP-1 or pBDNP-2 resulted in expected forms of chimeric DNP (cDNP) in cell lysates and conditioned media. Functional studies demonstrated the ability of both forms of cDNP within conditioned media to stimulate cGMP production in human vascular smooth muscle cells (hVSMC). Expressed cDNP inhibited hVSMC proliferation and stimulated vasorelaxation in a similar fashion. To investigate the chronic physiological effects of administration of cDNP, an adenoviral vector expressing cDNP (Ad-BDNP) was generated. Intravenous delivery of Ad-BDNP in mice resulted in dose-dependent systemic expression of cDNP. The highest level of expression was associated with consistent elevation of its presumed second messenger (cGMP) for 21 days but with transient lowering of systolic blood pressure in normotensive mice. This study demonstrates the biological features of the expression of the xenogenic peptide DNP.


Assuntos
Pressão Sanguínea/fisiologia , GMP Cíclico/sangue , Venenos Elapídicos/genética , Peptídeos/genética , Adenoviridae/genética , Animais , Carcinoma Hepatocelular , Artérias Carótidas/fisiologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Células NIH 3T3 , Coelhos , Transfecção , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA