Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(5): e202316702, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38055189

RESUMO

A mechanochemical synthesis of sulfonimidamides by iron(II)-catalyzed exogenous ligand-free N-acyl nitrene transfer to sulfinamides is reported. The one-step method tolerates a wide range of sulfinamides with various substituents under solvent-free ambient conditions. Compared to its solution-phase counterpart, this mechanochemical approach shows better conversion and chemoselectivity. Mechanistic investigations by ESI-MS revealed the generation of crucial nitrene iron intermediates.

2.
Eur J Med Chem ; 232: 114187, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183872

RESUMO

Ataxia telangiectasia mutated and Rad3-related (ATR) kinase is an important regulator of the DNA damage response (DDR), especially in response to replication stress (RS). Tumor cells with ataxia-telangiectasia mutated (ATM) kinase loss of function or DDR defects that promote replicative stress are often more reliant on ATR for survival, highlighting ATR as a good antitumor target under the principle of synthetic lethality. Herein we report the discovery of a potent and highly selective ATR inhibitor, SKLB-197, which was obtained through structural optimization and structure-activity relationship (SAR) studies towards a hit compound (Cpd-1). SKLB-197 showed an IC50 value of 0.013 µM against ATR but very weak or no activity against other 402 protein kinases. It displayed potent antitumor activity against ATM-deficent tumors both in vitro and in vivo. In addition, this compound exhibited good pharmacokinetic properties. Overall, SKLB-197 could be a promising lead compound for drug discovery targeting ATR and deserves further in-depth studies.


Assuntos
Ataxia Telangiectasia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
3.
J Med Chem ; 65(3): 2035-2058, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35080890

RESUMO

Tropomyosin receptor kinases (TrkA, TrkB, and TrkC) are attractive therapeutic targets for multiple cancers. Two first-generation small-molecule Trks inhibitors, larotrectinib and entrectinib, have just been approved to use clinically. However, the drug-resistance mutations of Trks have already emerged, which calls for new-generation Trks inhibitors. Herein, we report the structural optimization and structure-activity relationship studies of 6,6-dimethyl-4-(phenylamino)-6H-pyrimido[5,4-b][1,4]oxazin-7(8H)-one derivatives as a new class of pan-Trk inhibitors. The prioritized compound 11g exhibited low nanomolar IC50 values against TrkA, TrkB, and TrkC and various drug-resistant mutants. It also showed good kinase selectivity. 11g displayed excellent in vitro antitumor activity and strongly suppressed Trk-mediated signaling pathways in intact cells. In in vivo studies, compound 11g exhibited good antitumor activity in BaF3-TEL-TrkA and BaF3-TEL-TrkCG623R allograft mouse models without exhibiting apparent toxicity. Collectively, 11g could be a promising lead compound for drug discovery targeting Trks and deserves further investigation.


Assuntos
Oxazinas/química , Inibidores de Proteínas Quinases/química , Receptor trkA/antagonistas & inibidores , Receptor trkB/antagonistas & inibidores , Receptor trkC/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxazinas/metabolismo , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Receptor trkA/genética , Receptor trkA/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 207: 112703, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871341

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO), which mediate kynurenine pathway of tryptophan degradation, have emerged as potential new targets in immunotherapy for treatment of cancer because of their critical role in immunosuppression in the tumor microenvironment. In this investigation, we report the structural optimization and structure-activity relationship studies of 1-phenyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as a new class of IDO1/TDO dual inhibitors. Among all the obtained dual inhibitors, 1-(3-chloro-4-fluorophenyl)-6-fluoro-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione (38) displayed the most potent IDO1 and TDO inhibitory activities with IC50 (half-maximal inhibitory concentration) values of 5 nM for IDO1 and 4 nM for TDO. It turned out that compound 38 was not a PAINS compound. Compound 38 could efficiently inhibit the biofunction of IDO1 and TDO in intact cells. In LL2 (Lewis lung cancer) and Hepa1-6 (hepatic carcinoma) allograft mouse models, this compound also showed considerable in vivo anti-tumor activity and no obvious toxicity was observed. Therefore, 38 could be a good lead compound for cancer immunotherapy and deserving further investigation.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Triazóis/química , Triazóis/farmacologia , Triptofano Oxigenase/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade , Triptofano Oxigenase/metabolismo
5.
Food Chem ; 262: 118-128, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29751898

RESUMO

In this study, dispersive micro solid phase extraction (DMSPE) combined with ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry method was established to extract and determine sudan dyes and their metabolites in real samples. The crown ether microfunctionalized multi-walled carbon nanotubes (MWCNTs) was applied as the sorbent in DMSPE procedure. Several experimental parameters that can effect the extraction performance of the DMSPE method were investigated separately by a univariate method. The validation data showed that the limits of detection were in the range of 0.084-13.13 µg/kg, the mean recoveries were ranged from 80.15 to 103.58% for six samples. Compared with other published methods, the proposed method was more effective, more time-saving and more eco-friendly. Finally, the developed method was successfully applied to enrich and detect sudan dyes and their metabolites in real samples.


Assuntos
Compostos Azo/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Corantes/isolamento & purificação , Análise de Alimentos/métodos , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Compostos Azo/análise , Corantes/análise , Éteres de Coroa/química , Limite de Detecção , Nanotubos de Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA