Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
Cell Commun Signal ; 22(1): 465, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350261

RESUMO

Gastric cancer (GC) remains a significant health challenge due to its high mortality rate and the limited efficacy of current targeted therapies. A critical barrier in developing more effective treatments is the lack of understanding of specific mechanisms driving GC progression. This study investigates the role of Transient Receptor Potential Vanilloid 1 (TRPV1), a non-selective cation channel known for its high Ca2+ permeability and tumor-suppressive properties in gastrointestinal cancers. Specifically, we explore the impact of SUMOylation-a dynamic and reversible post-translational modification-on TRPV1's function in GC. We demonstrate that SUMOylation of TRPV1 inhibits cell proliferation and migration in MGC-803 and AGS GC cells. By mutating amino acids near TRPV1's existing SUMO motif (slKpE), we created a bidirectional SUMO motif (EψKψE) that enhances TRPV1 SUMOylation, resulting in further suppression of GC cell proliferation and migration. In vivo studies support these findings, showing that TRPV1 SUMOylation prevents spontaneous tumorigenesis in a mouse GC model. Further investigation reveals that TRPV1 SUMOylation increases the protein's membrane expression by inhibiting its interaction with the adaptor-related protein complex 2 mu 1 subunit (AP2M1). This elevated membrane expression leads to increased intracellular Ca2+ influx, activating the AMP-activated protein kinase (AMPK) pathway, which in turn inhibits the proliferation and migration of GC cells.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Gástricas , Sumoilação , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Membrana Celular/metabolismo
3.
Int J Biol Macromol ; 276(Pt 2): 134025, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033888

RESUMO

Bioenvironmental and biological factors have the potential to contribute to the development of glioma, a type of brain tumor. Recent studies have suggested that a unique circular RNA called circCSNK1G3 could play a role in promoting the growth of glioma cells. It does this by stabilizing a specific microRNA called miR-181 and reducing the expression of a tumor-suppressor gene known as chromobox protein homolog 7 (CBX7). To further investigate circCSNK1G3 and its effects on glioma, we utilized a nanoplatform called adeno-associated virus (AAV)-RNAi.To explore the functional implications of circCSNK1G3, we employed siRNA to silence its expression. Along with these effects, the silencing of circCSNK1G3 led to a depletion of miR-181d and an upregulation of CBX7. When we introduced miR-181d mimics, which artificially increase the levels of miR-181d, the anti-glioma cell activity induced by circCSNK1G3 siRNA was almost completely reversed. Conversely, inhibiting miR-181d mimicked the effects of circCSNK1G3 silencing. Moreover, when we overexpressed circCSNK1G3 in glioma cells, we observed an elevation of miR-181d and a depletion of CBX7. We found that the growth of A172 xenografts (tumors) carrying circCSNK1G3 shRNA was significantly inhibited. In these xenograft tissues, we detected a depletion of circCSNK1G3 and miR-181d, as well as an upregulation of CBX7.


Assuntos
Proliferação de Células , Glioma , MicroRNAs , Complexo Repressor Polycomb 1 , RNA Circular , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , RNA Circular/genética , RNA Circular/metabolismo , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Camundongos Nus , Dependovirus/genética
4.
Acta Biomater ; 131: 508-518, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214663

RESUMO

Radio-sensitization is highly desired to reduce side-effect of the harsh dose of radiation therapy (RT), for which nanoparticles with high atomic number elements provide a promising tool. However, insufficient knowledge on utilizing the interaction between nanoparticles and cancerous cells hampers the improvement of therapeutic outcome. We herein employed NaGdF4:Yb,Er nano-crystals as the sensitizer, and modified them with a tumor targeting agent and a mitochondria targeting moiety, separately and jointly, to achieve varied extent of mitochondrial accumulation. We observed that NaGdF4:Yb,Er nano-crystal, even unmodified with targeting ligands, is effective for radio-sensitization. Furthermore, the extent of mitochondrial targeting was responsible for sensitization efficiency both in vitro and in vitro. By RNA sequencing technique, the result was ascribed to the reactive oxygen species (ROS) mediated TNF-JNK pathway and cell cycle arrest besides breaking DNA, in contrast to only DNA damage only with those untargeted nanoparticles. Our work indicated that ROS generated by the irradiation can be utilized by activating an alternative apoptotic pathway with mitochondrial targeting nanoparticles, and therefore may suggest an approach for the enhancement of radio-sensitization. STATEMENT OF SIGNIFICANCE: Radiosensitization by nanoparticles could reduce the burden of cancer due to lowering the dose of radiation therapy and reducing side-effect. How to fully utilize the interactions of irradiation-nanoparticles-biotissues remains a challenge for improving the outcome of radiosensitization. In this manuscript, by modifying tumor-targeting and mitochondria-targeting ligands on nanoparticles, separately and jointly, we demonstrated that the radiosensitization efficiency of NaGdF4:Yb,Er nanoparticle depends on the extent of accumulation near mitochondria. By RNA-seq technique, the RT sensitization with mitochondrial targeting was ascribed to ROS-mediated TNF-JNK pathway and cell cycle arrest, in contrast to only DNA breaks with untargeted nanoparticles. The results suggested a strategy for better utilization of the energy of therapeutic irradiation and demonstrate that subcellular targeting is a potent factor for designing nanoparticulate radiosensitizers.


Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Mitocôndrias , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio
5.
Aging (Albany NY) ; 12(22): 22550-22563, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159013

RESUMO

XL388 is a highly efficient and orally-available ATP-competitive PI3K-mTOR dual inhibitor. Its activity against glioma cells was studied here. In established and primary human glioma cells, XL388 potently inhibited cell survival and proliferation as well as cell migration, invasion and cell cycle progression. The dual inhibitor induced significant apoptosis activation in glioma cells. In A172 cells and primary human glioma cells, XL388 inhibited Akt-mTORC1/2 activation by blocking phosphorylation of Akt and S6K1. XL388-induced glioma cell death was only partially attenuated by a constitutively-active mutant Akt1. Furthermore, it was cytotoxic against Akt1-knockout A172 glioma cells. XL388 downregulated MAF bZIP transcription factor G (MAFG) and inhibited Nrf2 signaling, causing oxidative injury in glioma cells. Conversely, antioxidants, n-acetylcysteine, pyrrolidine dithiocarbamate and AGI-106, alleviated XL388-induced cytotoxicity and apoptosis in glioma cells. Oral administration of XL388 inhibited subcutaneous A172 xenograft growth in severe combined immunodeficient mice. Akt-S6K1 inhibition and MAFG downregulation were detected in XL388-treated A172 xenograft tissues. Collectively, XL388 efficiently inhibits human glioma cell growth, through Akt-mTOR-dependent and -independent mechanisms.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Sulfonas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos SCID , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Front Psychol ; 11: 1516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714254

RESUMO

With improvements in treatments for primary tumor and brain metastases (BM), the life expectancy of patients with advanced cancers is increasing; thus, helping patients with BM maintain quality of life is becoming increasingly important. Sense of coherence (SOC) has been found to be closely related to health-related quality of life (HRQoL) in patients with chronic diseases, however, this relationship has not been validated in patients with BM. This study first examined the relationship between SOC and HRQoL in patients with BM, and further identified factors associated with SOC in these patients. Patients with BM reported lower scores for most of the functioning subscales and for the general rating of quality of life, and higher scores for most of the symptom subscales, compared with a normative sample. SOC was significantly correlated with most aspects of HRQoL in patients with BM. Further, SOC in the patients was associated with awareness of the disease, possession of religious belief, and type of primary cancer. These results validate the close relationship between SOC and HRQoL in patients with BM, and indicate that SOC is associated with awareness of illness and religious belief.

7.
Cell Death Differ ; 27(11): 3146-3161, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32483381

RESUMO

Posttranslational modifications of nuclear proteins, including transcription factors, nuclear receptors, and their coregulators, have attracted much attention in cancer research. Although phosphorylation of oligodendrocyte transcription factor 2 (Olig2) may contribute to the notorious resistance of gliomas to radiation and genotoxic drugs, the precise mechanisms remain elusive. We show here that in addition to phosphorylation, Olig2 is also conjugated by small ubiquitin-like modifier-1 (SUMO1) at three lysine residues K27, K76, and K112. SUMOylation is required for Olig2 to suppress p53-mediated cell cycle arrest and apoptosis induced by genotoxic damage, and to enhance resistance to temozolomide (TMZ) in glioma. Both SUMOylation and triple serine motif (TSM) phosphorylation of Olig2 are required for the antiapoptotic function. Olig2 SUMOylation enhances its genetic targeting ability, which in turn occludes p53 recruitment to Cdkn1a promoter for DNA-damage responses. Our work uncovers a SUMOylation-dependent regulatory mechanism of Olig2 in regulating cancer survival.


Assuntos
Dano ao DNA , Glioma/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Sumoilação , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Marcação de Genes , Glioma/genética , Glioma/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator de Transcrição 2 de Oligodendrócitos/genética , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Transl Neurodegener ; 8: 32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827782

RESUMO

BACKGROUND: CSF1R-related leukoencephalopathy, also known as hereditary diffuse leukoencephalopathy with spheroids (HDLS), is a rare white-matter encephalopathy characterized by motor and neuropsychiatric symptoms due to colony-stimulating factor 1 receptor (CSF1R) gene mutation. Few of CSF1R mutations have been functionally testified and the pathogenesis remains unknown. METHODS: In order to investigate clinical and pathological characteristics of patients with CSF1R-related leukoencephalopathy and explore the potential impact of CSF1R mutations, we analyzed clinical manifestations of 15 patients from 10 unrelated families and performed brain biopsy in 2 cases. Next generation sequencing was conducted for 10 probands to confirm the diagnosis. Sanger sequencing, segregation analysis and phenotypic reevaluation were utilized to substantiate findings. Functional examination of identified mutations was further explored. RESULTS: Clinical and neuroimaging characteristics were summarized. The average age at onset was 35.9 ± 6.4 years (range 24-46 years old). Younger age of onset was observed in female than male (34.2 vs. 39.2 years). The most common initial symptoms were speech dysfunction, cognitive decline and parkinsonian symptoms. One patient also had marked peripheral neuropathy. Brain biopsy of two cases showed typical pathological changes, including myelin loss, axonal spheroids, phosphorylated neurofilament and activated macrophages. Electron microscopy disclosed increased mitochondrial vacuolation and disorganized neurofilaments in ballooned axons. A total of 7 pathogenic variants (4 novel, 3 documented) were identified with autophosphorylation deficiency, among which c.2342C > T remained partial function of autophosphorylation. Western blotting disclosed the significantly lower level of c.2026C > T (p.R676*) than wild type. The level of microtubule associated protein 1 light chain 3-II (LC3-II), a classical marker of autophagy, was significantly lower in mutants expressed cells than wild type group by western blotting and immunofluorescence staining. CONCLUSIONS: Our findings support the loss-of-function and haploinsufficiency hypothesis in pathogenesis. Autophagy abnormality may play a role in the disease. Repairing or promoting the phosphorylation level of mutant CSF1R may shed light on therapeutic targets in the future. However, whether peripheral polyneuropathy potentially belongs to CSF1R-related spectrum deserves further study with longer follow-up and more patients enrolled. TRIAL REGISTRATION: ChiCTR, ChiCTR1800015295. Registered 21 March 2018.

9.
Cell Death Dis ; 10(11): 866, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727877

RESUMO

Long non-coding RNA THOR (Lnc-THOR) binds to IGF2BP1, essential for its function. We here show that Lnc-THOR is expressed in human glioma tissues and cells. Its expression is extremely low or even undetected in normal brain tissues, as well as in human neuronal cells and astrocytes. We show that Lnc-THOR directly binds to IGF2BP1 in established and primary human glioma cells. shRNA-mediated Lnc-THOR knockdown or CRISPR/Cas9-induced Lnc-THOR knockout potently inhibited cell survival and proliferation, while provoking glioma cell apoptosis. Contrarily, forced overexpression of Lnc-THOR promoted glioma cell growth and migration. Importantly, Lnc-THOR shRNA or knockout activated MAGEA6-AMPK signaling in glioma cells. AMPK inactivation, by AMPKα1 shRNA, knockout, or dominant-negative mutation (T172A), attenuated Lnc-THOR shRNA-induced A172 glioma cell apoptosis. Moreover, CRISPR/Cas9-induced IGF2BP1 knockout activated MAGEA6-AMPK signaling as well, causing A172 glioma cell apoptosis. Significantly, Lnc-THOR shRNA was ineffective in IGF2BP1 KO A172 cells. In vivo, Lnc-THOR silencing or knockout potently inhibited subcutaneous A172 xenograft tumor growth in mice. MAGEA6 downregulation and AMPK activation were detected in Lnc-THOR-silenced/-KO A172 tumor tissues. Taken together, Lnc-THOR depletion inhibits human glioma cell survival possibly by activating MAGEA6-AMPK signaling.


Assuntos
Antígenos de Neoplasias/genética , Glioma/genética , Proteínas de Neoplasias/genética , Proteínas Quinases/genética , RNA Longo não Codificante/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Camundongos , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética
10.
Biochem Biophys Res Commun ; 496(2): 712-718, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29360452

RESUMO

The long non-coding RNA SNHG7 (small nucleolar RNA host gene 7) has been reported to be involved in various cancers as a potential oncogene. However, the functions and molecular mechanisms of SNHG7 in glioblastoma (GBM) are largely unknown. In the present study, we showed that the expression of SNHG7 was significantly upregulated in GBM tissues and cell lines compared with non-cancerous brain tissues. Furthermore, we found that SNHG7 knockdown remarkably suppressed the proliferation, migration and invasion of A172 and U87 cells while inducing their apoptosis. Subsequently, we showed that SNHG7 knockdown significantly inhibited tumor growth and metastasis in vivo by using xenograft experiments in nude mice. In terms of mechanism, we found that SNHG7 directly inhibited miR-5095, which targeted the 3' UTR of CTNNB1 mRNA and subsequently downregulated the Wnt/ß-catenin signaling pathway in GBM. Using rescue experiments, we demonstrated that SNHG7 promoted the proliferation, migration and invasion of GBM cells through the inhibition of miR-5095 and concomitant activation of Wnt/ß-catenin signaling pathway. Taken together, the SNHG7/miR-5095 axis might be a potential target for the development of effective GBM therapy.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Glioblastoma/patologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus
11.
Cancer Lett ; 412: 21-29, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024810

RESUMO

Melanoma antigen A6 (MAGEA6)/TRIM28 complex is a cancer-specific ubiquitin ligase, which degradates tumor suppressor protein AMP-activated protein kinase (AMPK). We show that MAGEA6 is uniquely expressed in human glioma tissues and cells, which is correlated with AMPKα1 downregulation. It is yet absent in normal brain tissues and human astrocytes/neuronal cells. MAGEA6 knockdown by targeted-shRNA in glioma cells restored AMPKα1 expression, causing mTORC1 in-activation and cell death/apoptosis. Reversely, AMPKα1 knockdown or mutation ameliorated glioma cell death by MAGEA6 shRNA. In vivo, Glioma xenograft tumor growth in mice was largely inhibited following expressing MAGEA6 shRNA. AMPKα1 upregulation and mTORC1 inhibition were observed in MAGEA6 shRNA-bearing xenograft tissues. Collectively, MAGEA6 promotes glioma cell survival possibly via targeting AMPKα1.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Antígenos de Neoplasias/fisiologia , Glioma/patologia , Proteínas de Neoplasias/fisiologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Idoso , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Endocrinol (Oxf) ; 87(4): 367-374, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28543178

RESUMO

OBJECTIVE: The data on patients with short-term remission of Cushing's disease (CD) might provide information that is not available from previous long-term remission studies. We aimed to investigate structural changes in the brain in these patients and to examine whether these changes were associated with clinical characteristics. DESIGN: A cross-sectional study was performed. METHODS: Thirty-four patients with CD (14 with CD in short-term remission and 20 with active CD) and 34 controls matched for age, sex and education underwent clinical evaluation and magnetic resonance imaging brain scans. Biometric measurements, disease duration and remission duration data were collected. Grey matter volumes in the whole brain were examined using voxel-based morphometry (VBM). RESULTS: No differences were observed in the grey matter volumes of the medial frontal gyrus (MFG) and cerebellum between the patients with remitted CD and healthy controls, whereas patients with active CD had smaller grey matter volumes in these two regions compared with controls and patients with remitted CD. Furthermore, significant correlations were found between remission time and grey matter values in these regions in short-term remission patients with CD. Additionally, greater grey matter volumes in the bilateral caudate of short-term remission patients with CD were observed. CONCLUSIONS: Trends for structural restoration were found in CD patients with short-term remission. This finding was associated with the number of days elapsed since curative surgery and the current age of the patients. This study enhances our understanding of potential reversibility after the resolution of hypercortisolism in CD patients.


Assuntos
Imageamento por Ressonância Magnética/métodos , Hipersecreção Hipofisária de ACTH/diagnóstico por imagem , Hipersecreção Hipofisária de ACTH/patologia , Adulto , Estudos Transversais , Síndrome de Cushing/diagnóstico por imagem , Síndrome de Cushing/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Adulto Jovem
13.
PLoS One ; 11(8): e0161017, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27532105

RESUMO

Here, we studied the anti-glioma cell activity by a novel AMP-activated protein kinase (AMPK) activator GSK621. We showed that GSK621 was cytotoxic to human glioma cells (U87MG and U251MG lines), possibly via provoking caspase-dependent apoptotic cell death. Its cytotoxicity was alleviated by caspase inhibitors. GSK621 activated AMPK to inhibit mammalian target of rapamycin (mTOR) and downregulate Tetraspanin 8 (Tspan8) in glioma cells. AMPK inhibition, through shRNA knockdown of AMPKα or introduction of a dominant negative (T172A) AMPKα, almost reversed GSK621-induced AMPK activation, mTOR inhibition and Tspan8 degradation. Consequently, GSK621's cytotoxicity in glioma cells was also significantly attenuated by AMPKα knockdown or mutation. Further studies showed that GSK621, at a relatively low concentration, significantly potentiated temozolomide (TMZ)'s sensitivity and lethality against glioma cells. We summarized that GSK621 inhibits human glioma cells possibly via activating AMPK signaling. This novel AMPK activator could be a novel and promising anti-glioma cell agent.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Glioma/tratamento farmacológico , Glioma/enzimologia , Imidazóis/farmacologia , Pirimidinonas/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioma/patologia , Humanos , Imidazóis/administração & dosagem , Pirimidinonas/administração & dosagem , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Temozolomida , Tetraspaninas/metabolismo
14.
Sci Rep ; 5: 11066, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26067607

RESUMO

The ubiquitin-protein ligase E3C (UBE3C) belongs to the E3 ligase enzyme family and implicates in the ubiquitin-proteasome pathway, thus regulates physiological and cancer-related processes. Here, we investigated the expression and roles of UBE3C in glioma. We demonstrated that UBE3C was overexpressed in glioma tissues and cell lines. Inhibition of UBE3C expression in glioma cells significantly decreased cell migration and invasion in vitro. Mechanistically, we disclosed that UBE3C physically interacted with and ubiquitinated tumor suppressor gene annexin A7 (ANXA7), resulting in ubiquitination and degradation of ANXA7. Our results also revealed that increased UBE3C expression was accompanied by a reduction in ANXA7 protein expression in glioma tissues, but not ANXA7 mRNA. Importantly, the inhibition of ANXA7 expression in gliomas cells with UBE3C interference could rescue the cell invasion. Clinically, UBE3C overexpression significantly correlated with high-grade tumors (p < 0.05), poor overall survival, and early tumor recurrence. Thus, our data reveal that high UBE3C expression contributes to glioma progression by ubiquitination and degradation of ANXA7, and thus presents a novel and promising target for glioma therapy.


Assuntos
Anexina A7/metabolismo , Glioma/metabolismo , Proteólise , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitinação , Anexina A7/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
15.
Int J Mol Sci ; 16(3): 5363-74, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25761241

RESUMO

The malignant glioma remains one of the most aggressive human malignancies with extremely poor prognosis. Glioma cell invasion and migration are the main causes of death. In the current study, we studied the expression and the potential functions of tetraspanin 8 (Tspan8) in malignant gliomas. We found that Tspan8 expression level is high in both malignant glioma tissues and in several human glioma cell lines, where it formed a complex integrin α3 and rictor, the latter is a key component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Disruption of this complex, through siRNA-mediated knockdown of anyone of these three proteins, inhibited U251MG glioma cell migration in vitro. We further showed that Tspan8-rictor association appeared required for mTORC2 activation. Knockdown of Tspan8 by the targeted siRNAs prevented mTOR-rictor (mTORC2) assembly as well as phosphorylation of AKT (Ser-473) and protein kinase C α (PKCα) in U251MG cells. Together, these results demonstrate that over-expressed Tspan8 in malignant glioma forms a complex with rictor and integrin α3 to mediate mTORC2 activation and glioma cell migration. Therefore, targeting Tspan8-rictor-integrin α3 complex may provide a potential therapeutic intervention for malignant glioma.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Glioma/metabolismo , Integrina alfa3/metabolismo , Tetraspaninas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Integrina alfa3/genética , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Tetraspaninas/genética
16.
Biochem Biophys Res Commun ; 458(3): 476-482, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25680464

RESUMO

Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Glioma/genética , Glioma/patologia , Tetraspaninas/genética , Regulação para Cima , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/enzimologia , Humanos , Gradação de Tumores , Interferência de RNA , Temozolomida , Tetraspaninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA