Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Cancer ; 24(1): 507, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654231

RESUMO

BACKGROUND: Circulating tumor cell (CTC) clusters play a critical role in carcinoma metastasis. However, the rarity of CTC clusters and the limitations of capture techniques have retarded the research progress. In vitro CTC clusters model can help to further understand the biological properties of CTC clusters and their clinical significance. Therefore, it is necessary to establish reliable in vitro methodological models to form CTC clusters whose biological characteristics are very similar to clinical CTC clusters. METHODS: The assays of immunofluorescence, transmission electron microscopy, EdU incorporation, cell adhension and microfluidic chips were used. The experimental metastasis model in mice was used. RESULTS: We systematically optimized the culture methods to form in vitro CTC clusters model, and more importantly, evaluated it with reference to the biological capabilities of reported clinical CTC clusters. In vitro CTC clusters exhibited a high degree of similarity to the reported pathological characteristics of CTC clusters isolated from patients at different stages of tumor metastasis, including the appearance morphology, size, adhesive and tight junctions-associated proteins, and other indicators of CTC clusters. Furthermore, in vivo experiments also demonstrated that the CTC clusters had an enhanced ability to grow and metastasize compared to single CTC. CONCLUSIONS: The study provides a reliable model to help to obtain comparatively stable and qualified CTC clusters in vitro, propelling the studies on tumor metastasis.


Assuntos
Neoplasias da Mama , Técnicas de Cultura de Células , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patologia , Animais , Neoplasias da Mama/patologia , Humanos , Camundongos , Feminino , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Metástase Neoplásica
2.
Chin Med ; 19(1): 45, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454519

RESUMO

BACKGROUND: Cutaneous melanoma is a kind of skin malignancy with low morbidity but high mortality. Cryptotanshinone (CPT), an important component of salvia miltiorrhiza has potent anti-tumor activity and also indicates therapeutic effect on dermatosis. So we thought that CPT maybe a potential agent for therapy of cutaneous melanoma. METHODS: B16F10 and A375 melanoma cells were used for in vitro assay. Tumor graft models were made in C57BL/6N and BALB/c nude mice for in vivo assay. Seahorse XF Glycolysis Stress Test Kit was used to detect extracellular acidification rate and oxygen consumption rate. Si-RNAs were used for knocking down adenosine monophosphate-activated protein kinase (AMPK) expression in melanoma cells. RESULTS: CPT could inhibit the proliferation of melanoma cells. Meanwhile, CPT changed the glucose metabolism and inhibited phosphofructokinase (PFK)-mediated glycolysis in melanoma cells to a certain extent. Importantly, CPT activated AMPK and inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Both AMPK inhibitor and silencing AMPK could partially reverse CPT's effect on cell proliferation, cell apoptosis and glycolysis. Finally, in vivo experimental data demonstrated that CPT blocked the growth of melanoma, in which was dependent on the glycolysis-mediated cell proliferation. CONCLUSIONS: CPT activated AMPK and then inhibited PFK-mediated aerobic glycolysis leading to inhibition of growth of cutaneous melanoma. CPT should be a promising anti-melanoma agent for clinical melanoma therapy.

3.
Dysphagia ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319366

RESUMO

Airway invasion is common in patients with Parkinson's disease (PD) and can cause serious complications. However, a PD-related dysphagic pattern has not been clearly elucidated. In this study, 53 patients with early to moderate PD were enrolled to undergo a videofluoroscopic study of swallowing evaluation (VFSS) and a battery of neuropsychological assessments. A set of VFSS variables (three visuoperceptual, nine temporal, and six spatial) were measured. The main effects of bolus viscosity and volume on airway invasion were calculated. Statistical analyses were performed to determine key kinematic factors of airway invasion for swallowing each bolus type. Airway invasion frequency was significantly higher for liquid boluses (liquid vs. pudding P < 0.001; liquid vs. honey P = 0.006). Laryngeal vestibule closure reaction time (LVCrt) was the key kinematic factor of airway invasion for 3 ml liquid swallow (P = 0.040), anterior displacement of hyoid bone was the key kinematic factor for both 5 ml and 10 ml liquid swallows (P = 0.010, 0.034, respectively). Male sex and advanced Hoehn and Yahr stage were significantly related to reduced anterior displacement of hyoid bone. These results reveal the dysphagic pattern related to PD, demonstrating that prolonged LVCrt and reduced anterior displacement of hyoid bone are two crucial kinematic factors contributing to airway invasion during the liquid swallow. In addition, hyoid bone dysfunction was correlated with disease severity and male sex. Our findings warrant further investigation of the pathophysiological mechanism of dysphagia in PD and would guide clinical intervention.

4.
Front Pharmacol ; 14: 1185987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601061

RESUMO

Introduction: Elemene injection and oral emulsion, known as elemene, have been utilized have been used in adjuvant therapy for cancer patients in China for more than 20 years. In order to evaluate the efficacy and potential risks of the treatments in cancer patients undergoing chemotherapy, a system review and meta-analysis were conducted. Additionally, the factors that may influence the outcomes were also explored. Methods: A comprehensive search was conducted across various databases including PubMed, Cochrane Library, Web of Science, EMBASE, CKNI, Wan Fang, and VIP databases. Meta-regression, subgroup, and sensitivity analyses were conducted to explore the heterogeneity. GRADE system and TSA were used to assess the strength of evidence and robustness of the results. Results: The pooled data showed that combination with elemene could improve the response rate (RR:1.48, 95%CI:1.38-1.60, p < 0.00001), disease control rate (RR:1.20, 95%CI:1.15-1.25, p < 0.00001), the rate of quality-of-life improvement and stability (WMD:1.31, 95% CI:1.12-1.53, p = 0.0006), immune function (CD4+/CD8+: WMD:0.33, 95% CI:0.24-0.42, p < 0.00001), survival rate (1-year, RR:1.34, 95% CI:1.15-1.56, p = 0.0002; 2-year, RR:1.57, 95% CI:1.14-2.16, p = 0.006), and decrease the prevalence of most chemotherapy-induced side effects, especially leukopenia (Ⅲ-Ⅳ) (RR:0.46, 95% CI:0.35-0.61, p < 0.00001), thrombocytopenia (RR:0.86, 95% CI:0.78-0.95, p = 0.003), and hemoglobin reduction (RR:0.83, 95% CI:0.73-0.95, p = 0.007). However, the administration of elemene has been found to significantly increase the incidence of phlebitis in patients undergoing chemotherapy (RR:3.41, 95% CI:1.47-7.93, p = 0.004). Meta-regression and subgroup analyses discovered that the outcomes were rarely influenced by CR, CT, and dosage of elemene (DE) but the cycle number of elemene (CNE) and TT were the main sources of heterogeneity. Discussion: As the treatment time and the number of cycles increased, the efficacy of the elemene combination decreased across various aspects. Thus, shorter duration and fewer cycles are recommended.

5.
Biomed Pharmacother ; 163: 114817, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37141733

RESUMO

Cardiovascular and cerebrovascular diseases (CVDs) remain an intractable problem and have high morbidity and mortality worldwide, as well as substantial health and economic burdens, representing an urgent clinical need. In recent years, the focus of research has shifted from the use of mesenchymal stem cells (MSCs) for transplantation to the use of their secretory exosomes (MSC-exosomes) for the treatment of numerous CVDs, including atherosclerosis, myocardial infarction (MI), heart failure (HF), ischemia/reperfusion (I/R), aneurysm, and stroke. MSCs are pluripotent stem cells with multiple differentiation pathways that exert pleiotropic effects by producing soluble factors, the most effective components of which are exosomes. MSC-exosomes are considered to be an excellent and promising cell-free therapy for CVDs due to their higher circulating stability, improved biocompatibility, reduced toxicity, and immunogenicity. In addition, exosomes play critical roles in repairing CVDs by inhibiting apoptosis, regulating inflammation, ameliorating cardiac remodeling, and promoting angiogenesis. Herein, we describe knowledge about the biological characteristics of MSC-exosomes, investigate the mechanism by which MSC-exosomes mediate therapeutic repair, and summarize recent advances in the efficacy of MSC-exosomes in CVDs, with a view toward future clinical applications.


Assuntos
Transtornos Cerebrovasculares , Exossomos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Exossomos/metabolismo , Coração , Infarto do Miocárdio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transtornos Cerebrovasculares/terapia , Transtornos Cerebrovasculares/metabolismo
6.
Front Oncol ; 12: 944487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059616

RESUMO

Circulating tumor cells (CTCs) that survive in the blood are playing an important role in the metastasis process of tumor. In addition, they have become a tool for tumor diagnosis, prognosis and recurrence monitoring. CTCs can exist in the blood as individual cells or as clumps of aggregated cells. In recent years, more and more studies have shown that clustered CTCs have stronger metastasis ability compared to single CTCs. With the deepening of studies, scholars have found that cancer cells can combine not only with each other, but also with non-tumor cells present in the blood, such as neutrophils, platelets, etc. At the same time, it was confirmed that non-tumor cells bound to CTCs maintain the survival and proliferation of cancer cells through a variety of ways, thus promoting the occurrence and development of tumor. In this review, we collected information on tumorigenesis induced by CTC clusters to make a summary and a discussion about them. Although CTC clusters have recently been considered as a key role in the transition process, many characteristics of them remain to be deeply explored. A detailed understanding of their vulnerability can prospectively pave the way for new inhibitors for metastasis.

7.
Eur J Pharmacol ; 931: 175226, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007607

RESUMO

Metastasis is the leading cause of death in melanoma patients. Aerobic glycolysis is a common metabolic feature in tumor and is closely related to cell growth and metastasis. Kaempferol (KAM) is one of the active ingredients in the total flavonoids of Chinese traditional medicine Sparganii Rhizoma. Studies have shown that it interferes with the cell cycle, apoptosis, angiogenesis and metastasis of tumor cells, but whether it can affect the aerobic glycolysis of melanoma is still unclear. Here, we explored the effects and mechanisms of KAM on melanoma metastasis and aerobic glycolysis. KAM inhibited the migration and invasion of A375 and B16F10 cells, and reduced the lung metastasis of melanoma cells. Extracellular acidification rates (ECAR) and glucose consumption were obviously suppressed by KAM, as well as the production of ATP, pyruvate and lactate. Mechanistically, the activity of hexokinase (HK), the first key kinase of aerobic glycolysis, was significantly inhibited by KAM. Although the total protein expression of HK2 was not significantly changed, the binding of HK2 and voltage-dependent anion channel 1 (VDAC1) on mitochondria was inhibited by KAM through AKT/GSK-3ß signal pathway. In conclusion, KAM inhibits melanoma metastasis via blocking aerobic glycolysis of melanoma cells, in which the binding of HK2 and VDAC1 on mitochondria was broken.


Assuntos
Melanoma , Canal de Ânion 1 Dependente de Voltagem , Linhagem Celular Tumoral , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicólise , Hexoquinase/metabolismo , Humanos , Quempferóis/farmacologia , Melanoma/patologia , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
8.
Anticancer Drugs ; 33(4): 394-399, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35266889

RESUMO

Intramedullary spinal glioblastoma multiforme (GBM) tends to recur within 11 months of surgical resection, even after adjuvant chemoradiation therapy. Treatment options for recurrent spinal GBM are often limited. (Z)-n-butylidenephthalide [(Z)-BP] is a natural compound that induces apoptosis, antiproliferation, anti-invasion and antistemness effects in GBM cells. The Cerebraca wafer consists of (Z)-BP within a biodegradable wafer that can be implanted in the parenchyma of the central nervous system to treat high-grade glioma. We present a 44-year-old woman with a recurrent spinal GBM who underwent microscopic surgical tumor excision under fluorescein sodium guidance and intraoperative neurophysiologic monitoring. Four Cerebraca wafers were implanted into the cord and intradural space during the operation. MRI revealed that both tumor volume and spinal cord edema had decreased 4 days after surgery; both had substantially decreased 16 months after surgery. Neurologic functions and quality of life were improved after salvage therapy. No adverse events were reported. Cerebraca wafer implantation during surgical re-excision of spinal GBM may be a novel therapeutic approach for reduction of the tumor size and subsequent spinal cord edema with no toxicity to the spinal cord.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias da Medula Espinal , Adulto , Neoplasias Encefálicas/tratamento farmacológico , Vértebras Cervicais/patologia , Preparações de Ação Retardada/uso terapêutico , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Humanos , Anidridos Ftálicos , Polímeros , Qualidade de Vida , Neoplasias da Medula Espinal/diagnóstico por imagem , Neoplasias da Medula Espinal/tratamento farmacológico , Neoplasias da Medula Espinal/cirurgia
9.
Chem Commun (Camb) ; 57(53): 6522-6525, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34105555

RESUMO

We have proposed a simple electrochemical method in this work for the assay of tumor cells through their own steric hindrance effect. Specifically, tumor cells can block the catalysis of terminal deoxynucleotidyl transferase to the aptamer previously immobilized on the electrode surface. By making use of the hindrance effect, cancer cells can be quantitatively analyzed in the range from 1.6 × 102 to 1.6 × 106 cells per mL without complicated design or cumbersome operation, while the detection limit can be about 53 cells per mL. This method can also show satisfactory performance in complex environments, indicating its potential in clinical application.


Assuntos
Separação Celular/métodos , Eletroquímica/métodos , Linhagem Celular Tumoral , Eletrodos , Humanos , Limite de Detecção
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119730, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33794421

RESUMO

Two Schiff-base fluorescent probes (1 and 2) were directly synthesized from natural cinnamaldehyde, and they were characterized by FT-IR, 1H and 13C NMR, HRMS. Compound 1 had no fluorescence, while compound 2 could emit significant yellow fluorescence in solid and provide green light in solution. Probe 1 could selectively sense ClO- with a fluorescence enhancement, providing a good linear relationship between the fluoresence intensity and ClO- concentrations (0-5.5 × 10-5 mol/L), y = 175.64x-19.399, R2 = 0.9937, and the limit of detection (LOD) was 39.4 nM. Probe 2 was sensitive for Cu2+ by quenching with two linear relationships at the Cu2+ concentrations from 0 to 2.1 × 10-5 mol/L, LOD = 73.9 nM. Furthermore, live celluar imaging of human astrocytoma U-251 MG cells and human liver cancer cells (Hu-7) had achieved using the 1 + ClO- and 2, offering clear intracellular fluorescence. Finally, the 1 + ClO- and 2 could also be used to dye bamboo tissues for a good use. Thus, the cinnamaldehyde derivatives could be further used in the field of celluar and bamboo imaging.


Assuntos
Corantes Fluorescentes , Bases de Schiff , Acroleína/análogos & derivados , Humanos , Imagem Óptica , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Biomedicines ; 10(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35052754

RESUMO

Deep brain stimulation (DBS) improves Parkinson's disease (PD) symptoms by suppressing neuropathological oscillations. These oscillations are also modulated by inhalational anesthetics used during DBS surgery in some patients, influencing electrode placement accuracy. We sought to evaluate a method that could avoid these effects. We recorded subthalamic nucleus (STN) neuronal firings in 11 PD patients undergoing DBS under inhalational anesthesia. Microelectrode recording (MER) during DBS was collected under median nerve stimulation (MNS) delivered at 5, 20, and 90 Hz frequencies and without MNS. We analyzed the spike firing rate and neuronal activity with power spectral density (PSD), and assessed correlations between the neuronal oscillation parameters and clinical motor outcomes. No patient experienced adverse effects during or after DBS surgery. PSD analysis revealed that peripheral 20 Hz MNS produced significant differences in the dorsal and ventral subthalamic nucleus (STN) between the beta band oscillation (16.9 ± 7.0% versus 13.5 ± 4.8%, respectively) and gamma band oscillation (56.0 ± 13.7% versus 66.3 ± 9.4%, respectively) (p < 0.05). Moreover, 20-Hz MNS entrained neural oscillation over the dorsal STN, which correlated positively with motor disabilities. MNS allowed localization of the sensorimotor STN and identified neural characteristics under inhalational anesthesia. This paradigm may help identify an alternative method to facilitate STN identification and DBS surgery under inhalational anesthesia.

12.
Aging Dis ; 11(6): 1585-1593, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33269108

RESUMO

Aging is a complex biological process closely linked with the occurrence and development of age-related diseases. Despite recent advances in lifestyle management and drug therapy, the late diagnosis of these diseases causes severe complications, usually resulting in death and consequently impacting social economies. Therefore, the identification of reliable biomarkers and the creation of effective treatment alternatives for age-related diseases are needed. Circular RNAs (circRNAs) are a novel class of RNA molecules that form covalently closed loops capable of regulating gene expression at multiple levels. Several studies have reported the emerging functional roles of circRNAs in various conditions, providing new perspectives regarding cellular physiology and disease pathology. Notably, accumulating evidence demonstrates the involvement of circRNAs in the regulation of age-related pathologies, including cardio-cerebrovascular disease, neurodegenerative disease, cancer, diabetes, rheumatoid arthritis, and osteoporosis. Therefore, the association of circRNAs with these age-related pathologies highlights their potential as diagnostic biomarkers and therapeutic targets for better disease management. Here, we review the biogenesis and function of circRNAs, with a special focus on their regulatory roles in aging-related pathologies, as well as discuss their potential as biological biomarkers and therapeutic targets for these diseases.

13.
Biosens Bioelectron ; 169: 112638, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987328

RESUMO

Covalent organic frameworks (COFs) have attracted more and more attention due to their diverse structures and multifunctionality. Their unique physicochemical properties make them exhibit great application potential in the field of biosensing. In this work, we have designed and fabricated a novel COFs-based nanoprobe named HRP-pSC4-AuNPs@COFs, where spherical COFs are functionalized with para-sulfocalix [4] arene hydrate (pSC4)-modified gold nanoparticles (AuNPs) and horseradish peroxidase (HRP). Then, we have applied it for the electrochemical detection of colorectal cancer (CRC)-derived exosomes. In this design, pSC4 as amicable linker can recognize and bind with various amino acid residues on the exosomes surface, while AuNPs with excellent conductivity can accelerate the migration of charge carriers and improve the response of biosensors. Noteworthy, the high porosity of COFs allows them to load a large amount of HRP, endowing COF with high catalytic activity. Meanwhile, the exoskeleton of COFs can maintain the functionality of HRP with significantly elevated stability. With such design, the proposed method shows excellent analytical performance for the detection of CRC-derived exosomes in the linear range from 5 × 102 to 107 particles/µL with a detection limit down to 160 particles/µL. Further, this method has also been used to analyze clinical serum sample, and can successfully distinguish CRC patients from healthy people, indicating the promising potential in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Neoplasias Colorretais , Exossomos , Nanopartículas Metálicas , Estruturas Metalorgânicas , Neoplasias Colorretais/diagnóstico , Ouro , Humanos
14.
Anal Chem ; 92(19): 13478-13484, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32844648

RESUMO

The development of a simple, sensitive, and effective method for the analysis of circulating tumor cells (CTCs) is essential for cancer diagnosis and metastasis prediction. In this work, we have proposed an enzyme-free electrochemical method for specific capture, sensitive quantification, and efficient release of CTCs. To achieve this, the specific interaction between CTCs and the corresponding aptamer designed to be located in the identification probe (IP) will unfold the hairpin structure of IP. Consequently, IP will initiate a hybridization reaction to produce a duplex, which will further trigger the hybridization chain reaction (HCR) process to form a composite product of CTCs and double-stranded DNA polymers. Therefore, a significantly amplified signal readout can be obtained. Moreover, the composite product can be brought to the electrode surface by tetrahedral DNA nanostructures to achieve the purpose of capturing and quantifying CTCs. More significantly, these captured CTCs can be controlled released without compromising cell viability via a simple strand displacement reaction. Taking the breast cancer cell MCF-7 as a representative, the newly developed approach led to an ultralow detection limit of 3 cells mL-1, which is superior to several studies previously reported. The current method has also been demonstrated to analyze CTCs in human whole blood and hence revealed a great potential in the future.


Assuntos
Células Neoplásicas Circulantes/patologia , Células Cultivadas , DNA/química , Eletrodos , Células HEK293 , Humanos , Células MCF-7 , Microscopia de Fluorescência , Nanoestruturas/química , Propriedades de Superfície
15.
Anal Chem ; 92(5): 3819-3826, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024367

RESUMO

Glioblastoma (GBM) is one of the most fatal tumors in the brain, and its early diagnosis remains technically challenging due to the complex repertoires of oncogenic alterations and blood-brain barrier (BBB). GBM-derived specific exosomes can cross the BBB and circulate in body fluids, so they can be noninvasive biomarkers for the early diagnosis of GBM. Herein, we propose a sensitive and label-free electrochemical biosensor designed by using Zr-based metal-organic frameworks (Zr-MOFs) for the detection of GBM-derived exosomes with practical application. In the design, a peptide ligand can specifically bind with human epidermal growth factor receptor (EGFR) and EGFR variant (v) III mutation (EGFRvIII), which are overexpressed on the GBM-derived exosomes. Meanwhile, Zr-MOFs encapsulated with methylene blue can absorb on the surface of the exosomes due to the interaction between Zr4+ and the intrinsic phosphate groups outside of exosomes. Consequently, the concentration of exosomes can be directly quantified by monitoring the electroactive molecules inside MOFs, ranging from 9.5 × 103 to 1.9 × 107 particles/µL with the detection of limit of 7.83 × 103 particles/µL. Furthermore, this proposed biosensor can distinguish GBM patients from healthy groups, demonstrating the great prospect for early clinical diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Neoplasias Encefálicas/diagnóstico , Exossomos/metabolismo , Glioblastoma/diagnóstico , Estruturas Metalorgânicas/química , Zircônio/química , Neoplasias Encefálicas/metabolismo , Técnicas Eletroquímicas , Eletrodos , Receptores ErbB/análise , Receptores ErbB/genética , Exossomos/química , Glioblastoma/metabolismo , Humanos , Limite de Detecção , Azul de Metileno/química , Mutação
16.
ACS Appl Mater Interfaces ; 12(1): 322-329, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31840492

RESUMO

The exosome is a promising biomarker carrying many kinds of membrane proteins with huge heterogeneity, so the sensitive and multiplex analysis of exosomes is very significant for disease diagnosis and exploration of their biological functions. Herein, we propose an efficient method for highly sensitive detection and heterogeneity identification of exosomes based on the design and fabrication of an aptamer-coated liposome complex coupled with terminal deoxynucleotidyl transferase (TdT)-mediated polymerization. Specifically, in the presence of target exosomes, the aptamers immobilized on the surface of 1,2-dioleoyl-3-trimethylammonium-propane liposomes prefer to bind with exosomal membrane proteins due to the high affinity. The resulting aptamer-exosome complex will be accessible to TdT to switch on the polymerization reaction for signal amplification, achieving highly sensitive detection of exosomes. Furthermore, the proposed method can be employed to profile different exosomal membrane proteins by making use of a cluster of corresponding aptamers and obtain a fingerprint map of various cancer cell-derived exosomes. Thus, our approach may provide a highly sensitive and robust strategy for the identification of exosome heterogeneity with advantages of being label-free and having no separation, potentially enabling the precise subpopulation of exosomes with practical value in clinical applications.


Assuntos
Lipossomos/química , Lipossomos/metabolismo , DNA Nucleotidilexotransferase/metabolismo , Eletroforese , Exossomos/química , Quadruplex G , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Microscopia Confocal
17.
J Cell Mol Med ; 23(10): 6846-6858, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343107

RESUMO

Pyruvate kinase M2 (PKM2), playing a central role in regulating aerobic glycolysis, was considered as a promising target for cancer therapy. However, its role in cancer metastasis is rarely known. Here, we found a tight relationship between PKM2 and breast cancer metastasis, demonstrated by the findings that beta-elemene (ß-elemene), an approved drug for complementary cancer therapy, exerted distinct anti-metastatic activity dependent on PKM2. The results indicated that ß-elemene inhibited breast cancer cell migration, invasion in vitro as well as metastases in vivo. ß-Elemene further inhibited the process of aerobic glycolysis and decreased the utilization of glucose and the production of pyruvate and lactate through suppressing pyruvate kinase activity by modulating the transformation of dimeric and tetrameric forms of PKM2. Further analysis revealed that ß-elemene suppressed aerobic glycolysis by blocking PKM2 nuclear translocation and the expression of EGFR, GLUT1 and LDHA by influencing the expression of importin α5. Furthermore, the effect of ß-elemene on migration, invasion, PKM2 transformation, and nuclear translocation could be reversed in part by fructose-1,6-bisphosphate (FBP) and L-cysteine. Taken together, tetrameric transformation and nuclear translocation of PKM2 are essential for cancer metastasis, and ß-elemene inhibited breast cancer metastasis via blocking aerobic glycolysis mediated by dimeric PKM2 transformation and nuclear translocation, being a promising anti-metastatic agent from natural compounds.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Multimerização Proteica , Piruvato Quinase/metabolismo , Sesquiterpenos/farmacologia , Aerobiose , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Cisteína/farmacologia , Receptores ErbB/metabolismo , Feminino , Frutosedifosfatos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Front Pharmacol ; 10: 590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178738

RESUMO

Aerobic glycolysis plays a decisive role in cancer growth. However, its role in cancer metastasis was rarely understood. Cantharidin a natural compound from an arthropod insect cantharis exerts potent anticancer activity. Here we found cantharidin possesses significant anti-metastatic activity on breast cancer dependent on inhibition of aerobic glycolysis. Cantharidin indicates significant inhibition on migration and invasion of breast cancer cells, angiogenesis in vitro, and inhibits breast cancer cells metastasizing to liver and lung in vivo. Subsequent results revealed that cantharidin decreases the extracellular acidification rates (ECAR) but increases the oxygen consumption rates (OCR) in high metastatic cells, leading to suppression of aerobic glycolysis. This was considered to be due to inhibiting the activity of pyruvate kinase (PK) and further blocking pyruvate kinase M2 (PKM2) translocation in nucleus. Fructose-1,6-bisphosphate (FBP) and L-cysteine can significantly reverse cantharidin inhibition on breast cancer cell migration, invasion, and PKM2 translocation. Furthermore, glucose transporter 1 (GLUT1) forming a metabolic loop with PKM2 is downregulated, as well as epidermal growth factor receptor (EGFR), the regulator of the glycolytic loop. Totally, cantharidin inhibits the PKM2 nuclear translocation and breaks GLUT1/PKM2 glycolytic loop, resulting in aerobic glycolysis transformation to oxidation and subsequent reversing the metastases in breast cancer. Based on inhibiting multi signals mediated aerobic glycolysis, cantharidin could be prospectively used for prevention of metastasis in breast cancer patients.

19.
BMC Cancer ; 19(1): 257, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30902078

RESUMO

Following publication of the original article [1], the author noticed the following errors in the article.

20.
Front Immunol ; 10: 2980, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993048

RESUMO

Amyloid deposition is a histological hallmark of common human disorders including Alzheimer's disease (AD) and type 2 diabetes. Although some reports highlight that amyloid fibrils might activate the innate immunity system via pattern recognition receptors, here, we provide multiple lines of evidence for the protection by site-specific amyloid protein analogs and fibrils against autoimmune attacks: (1) strategies targeting clearance of the AD-related brain amyloid plaque induce high risk of deadly autoimmune destructions in subjects with cognitive dysfunction; (2) administration of amyloidogenic peptides with either full length or core hexapeptide structure consistently ameliorates signs of experimental autoimmune encephalomyelitis; (3) experimental autoimmune encephalomyelitis is exacerbated following genetic deletion of amyloid precursor proteins; (4) absence of islet amyloid coexists with T-cell-mediated insulitis in autoimmune diabetes and autoimmune polyendocrine syndrome; (5) use of islet amyloid polypeptide agonists rather than antagonists improves diabetes care; and (6) common suppressive signaling pathways by regulatory T cells are activated in both local and systemic amyloidosis. These findings indicate dual modulation activity mediated by amyloid protein monomers, oligomers, and fibrils to maintain immune homeostasis. The protection from autoimmune destruction by amyloid proteins offers a novel therapeutic approach to regenerative medicine for common degenerative diseases.


Assuntos
Doença de Alzheimer/imunologia , Amiloide/química , Amiloide/imunologia , Diabetes Mellitus Tipo 2/imunologia , Doença de Alzheimer/genética , Amiloide/genética , Animais , Autoimunidade , Diabetes Mellitus Tipo 2/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA