Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 5(3)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581080

RESUMO

Manipulation of the host cell is a crucial part of life for many intracellular organisms. We have recently come to appreciate the extent to which the intracellular pathogen Toxoplasma gondii reprograms its host cell, and this is illustrated by the marked upregulation of the central regulator c-Myc, an oncogene that coordinates myriad cellular functions. In an effort to identify an effector protein capable of regulating c-Myc, our laboratory constructed a screen for mutant parasites unable to accomplish this upregulation. Interestingly, this screen identified numerous components of a complex located in/on the parasitophorous vacuole membrane necessary to translocate Toxoplasma proteins out into the host cytosol, but it never identified a specific effector protein. Thus, how the parasite upregulates c-Myc has largely been a mystery. Previously, the Toxoplasma dense granule protein GRA16 has been described to bind to one isoform of PP2A-B, a regulatory subunit that coordinates the activity of the catalytic protein phosphatase PP2A. As other PP2A subunits have been reported to target PP2A protein phosphatase activity to c-Myc, subsequently leading to c-Myc destabilization, we examined whether GRA16 has an impact on host c-Myc accumulation. Expression of Toxoplasma's GRA16 protein in Neospora caninum, a close relative of Toxoplasma that does not naturally upregulate host c-Myc, conferred the ability on Neospora to do this now. Further support was obtained by deleting the GRA16 gene from Toxoplasma and observing a severely diminished ability of Toxoplasma tachyzoites to upregulate host c-Myc. Thus, GRA16 is an effector protein central to Toxoplasma's ability to upregulate host c-Myc.IMPORTANCE The proto-oncogene c-Myc plays a crucial role in the growth and division of many animal cells. Previous studies have identified an active upregulation of c-Myc by Toxoplasma tachyzoites, suggesting the existence of one or more exported "effector" proteins. The identity of such an effector, however, has not previously been known. Here, we show that a previously known secreted protein, GRA16, plays a crucial role in c-Myc upregulation. This finding will enable further dissection of the precise mechanism and role of c-Myc upregulation in Toxoplasma-infected cells.


Assuntos
Interações Hospedeiro-Patógeno/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Células Cultivadas , Fibroblastos/parasitologia , Humanos , Neospora/genética , Plasmídeos/genética , Proto-Oncogene Mas , Ativação Transcricional , Regulação para Cima , Fatores de Virulência/genética
2.
mSphere ; 5(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075880

RESUMO

Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins.IMPORTANCEToxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Protozoários/metabolismo , Toxoplasma/patogenicidade , Vacúolos/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Células Cultivadas , Ciclina E/genética , Ciclina E/metabolismo , Citosol/metabolismo , Humanos , Imunoprecipitação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Vacúolos/parasitologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
mBio ; 7(1): e02231-15, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838724

RESUMO

UNLABELLED: The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc-GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCE: Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Fatores de Virulência/metabolismo , Animais , Deleção de Genes , Macrófagos/parasitologia , Camundongos , Proteínas de Protozoários/genética , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , Fatores de Virulência/genética
4.
PLoS One ; 9(9): e108383, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25255287

RESUMO

Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.


Assuntos
Antígenos Virais/imunologia , Vacina BCG/imunologia , Glicolipídeos/imunologia , Mycobacterium bovis/imunologia , Células T Matadoras Naturais/imunologia , Animais , Vacina BCG/administração & dosagem , Vacina BCG/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Anergia Clonal/imunologia , Modelos Animais de Doenças , Feminino , Galactosilceramidas/imunologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia
5.
Clin Vaccine Immunol ; 21(10): 1385-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25080550

RESUMO

Live attenuated nonpathogenic Mycobacterium bovis bacillus Calmette-Guérin (BCG) mediates long-lasting immune responses, has been safely administered as a tuberculosis vaccine to billions of humans, and is affordable to produce as a vaccine vector. These characteristics make it very attractive as a human immunodeficiency virus (HIV) vaccine vector candidate. Here, we assessed the immunogenicity of recombinant BCG (rBCG) constructs with different simian immunodeficiency virus (SIV)gag expression cassettes as priming agents followed by a recombinant replication-incompetent New York vaccinia virus (NYVAC) boost in rhesus macaques. Unmutated rBCG constructs were used in comparison to mutants with gene deletions identified in an in vitro screen for augmented immunogenicity. We demonstrated that BCG-SIVgag is able to elicit robust transgene-specific priming responses, resulting in strong SIV epitope-specific cellular immune responses. While enhanced immunogenicity was sustained at moderate levels for >1 year following the heterologous boost vaccination, we were unable to demonstrate a protective effect after repeated rectal mucosal challenges with pathogenic SIVmac251. Our findings highlight the potential for rBCG vaccines to stimulate effective cross-priming and enhanced major histocompatibility complex class I presentation, suggesting that combining this approach with other immunogens may contribute to the development of effective vaccine regimens against HIV.


Assuntos
Portadores de Fármacos , Vetores Genéticos , Mycobacterium bovis/genética , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Imunidade Celular , Macaca mulatta , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
6.
J Neuroimmune Pharmacol ; 7(4): 866-76, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038157

RESUMO

Although most research to date on Trace Amine Associated Receptor 1 (TAAR1) has focused on its role in the brain, it has been recognized since its discovery in 2001 that TAAR1 mRNA is expressed in peripheral tissues as well, suggesting that this receptor may play a role in non-neurological pathways. This study reports TAAR1 expression, signaling and functionality in rhesus monkey lymphocytes. We detected a high level of TAAR1 protein in immortalized rhesus monkey B cell lines and a significant upregulation of TAAR1 protein expression in rhesus monkey lymphocytes following PHA treatment. Through screening a wide range of signaling pathways for their upregulation following TAAR1 activation by its potent agonist methamphetamine, we identified two transcription factors, CREB and NFAT, which are commonly associated with immune activation. Furthermore, we observed a TAAR1-dependent phosphorylation of PKA and PKC following treatment with methamphetamine in transfected HEK293 cells, immortalized rhesus monkey B cells and PHA-activated rhesus monkey lymphocytes. Accordingly, the high levels of TAAR1 that we observed on lymphocytes are inducible and fully functional, capable of transmitting a signal likely via PKA and PKC activation following ligand binding. More importantly, an increase in TAAR1 receptor expression is concomitant with lymphocyte immune activation, suggesting a possible role for TAAR1 in the generation or regulation of an immune response. TAAR1 is emerging as a potential therapeutic target, with regard to its ability to modulate brain monoamines. The current data raises the possibility that TAAR1-targeted drugs may also alter immune function.


Assuntos
Ativação Linfocitária/fisiologia , Linfócitos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Animais , Benzamidas/farmacologia , Western Blotting , Estimulantes do Sistema Nervoso Central/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Luciferases/genética , Macaca mulatta , Metanfetamina/farmacologia , Fatores de Transcrição NFATC/metabolismo , Proteína Quinase C/metabolismo , Pirrolidinas/farmacologia , Transfecção
7.
Eur J Immunol ; 40(11): 3085-96, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21061439

RESUMO

While it is well established that CD8(+) T cells generated in the absence of CD4(+) T cells mediate defective recall responses, the mechanism by which CD4(+) T cells confer help in the generation of CD8(+) T-cell responses remains poorly understood. To determine whether CD4(+) T-cell-derived IL-21 is an important regulator of CD8(+) T-cell responses in help-dependent and -independent viral infections, we examined these responses in the IL-21Rα(-/-) mouse model. We show that IL-21 has a role in primary CD8(+) T-cell responses and in recall CD8(+) T-cell responses in help-dependent viral infections. This effect is due to a direct action of IL-21 in enhancing the proliferation of virus-specific CD8(+) T cells and reducing their TRAIL expression. These findings indicate that IL-21 is an important mediator of CD4(+) T-cell help to CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Memória Imunológica/imunologia , Interleucinas/imunologia , Vaccinia virus/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/genética , Interleucinas/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Vaccinia virus/genética
8.
J Virol ; 81(23): 12793-802, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17881444

RESUMO

While recent studies have demonstrated that secondary CD8+ T cells develop into effector-memory cells, the impact of particular vaccine regimens on the elicitation of these cells remains poorly defined. In the present study we evaluated the effect of three different immunogens--recombinant vaccinia, recombinant adenovirus, and plasmid DNA--on the generation of memory cellular immune responses. We found that vectors that induce the rapid movement of CD8+ T cells into the memory compartment during a primary immune response also drive a rapid differentiation of these cells into effector-memory CD8+ T cells following a secondary immunization. In contrast, the functional profiles of both CD8+ and CD4+ T cells, assessed by measuring antigen-stimulated gamma interferon and interleukin-2 production, were not predominantly shaped by the boosting immunogen. We also demonstrated that the in vivo expression of antigen by recombinant vectors was brief following boosting immunization, suggesting that antigen persistence has a minimal impact on the differentiation of secondary CD8+ T cells. When used in heterologous or in homologous prime-boost combinations, these three vectors generated antigen-specific CD8+ T cells with different phenotypic profiles. Expression of the memory-associated molecule CD27 on effector CD8+ T cells decreased following heterologous but not homologous boosting, resulting in a phenotypic profile similar to that seen on primary CD8+ T cells. These data therefore suggest that the phenotype of secondary CD8+ T cells is determined predominantly by the boosting immunogen whereas the cytokine profile of these cells is shaped by both the priming and boosting immunogens.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunização Secundária , Memória Imunológica , Subpopulações de Linfócitos T/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Feminino , Interferon gama/biossíntese , Interleucina-2/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese , Vacinas de DNA/imunologia , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia
9.
J Virol ; 81(1): 74-83, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17050608

RESUMO

The most promising vaccine strategies for the induction of cytotoxic-T-lymphocyte responses have been heterologous prime/boost regimens employing a plasmid DNA prime and a live recombinant-vector boost. The priming immunogen in these regimens must elicit antigen-specific memory CD8+ T lymphocytes that will expand following the boosting immunization. Because plasmid DNA immunogens are expensive and their immunogenicity has proven disappointing in human clinical trials, we have been exploring novel priming immunogens that might be used in heterologous immunization regimens. Here we show that priming with a prototype recombinant Mycobacterium smegmatis strain expressing human immunodeficiency virus type 1 (HIV-1) gp120-elicited CD4+ T lymphocytes with a functional profile of helper cells as well as a CD8+ T-lymphocyte population. These CD8+ T lymphocytes rapidly differentiated to memory cells, defined on the basis of their cytokine profile and expression of CD62L and CD27. Moreover, these recombinant-mycobacterium-induced T lymphocytes rapidly expanded following boosting with a recombinant adenovirus expressing HIV-1 Env to gp120-specific CD8+ T lymphocytes. This work demonstrates a remarkable skewing of recombinant-mycobacterium-induced T lymphocytes to durable antigen-specific memory CD8+ T cells and suggests that such immunogens might be used as priming vectors in prime/boost vaccination regimens for the induction of cellular immune responses.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/fisiologia , Mycobacterium smegmatis/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Feminino , Produtos do Gene gag/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunização Secundária , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium smegmatis/genética , Plasmídeos/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA