Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cancer Res ; 84(1): 17-25, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37801608

RESUMO

The combination of endocrine therapy and CDK4/6 inhibitors such as palbociclib is an effective and well-tolerated treatment for estrogen receptor-positive (ER+) breast cancer, yet many patients relapse with therapy-resistant disease. Determining the mechanisms underlying endocrine therapy resistance is limited by the lack of ability to fully recapitulate inter- and intratumor heterogeneity in vitro and of availability of tumor samples from women with disease progression or relapse. In this study, multiple cell line models of resistant disease were used for both two-dimensional (2D)- and three-dimensional (3D)-based inhibitor screening. The screens confirmed the previously reported role of pro-proliferative pathways, such as PI3K-AKT-mTOR, in endocrine therapy resistance and additionally identified the transcription-associated cyclin-dependent kinase CDK9 as a common hit in ER+ cell lines and patient-derived organoids modeling endocrine therapy-resistant disease in both the palbociclib-sensitive and palbociclib-resistant settings. The CDK9 inhibitor, AZD4573, currently in clinical trials for hematologic malignancies, acted synergistically with palbociclib in these ER+in vitro 2D and 3D models. In addition, in two independent endocrine- and palbociclib-resistance patient-derived xenografts, treatment with AZD4573 in combination with palbociclib and fulvestrant resulted in tumor regression. Tumor transcriptional profiling identified a set of transcriptional and cell-cycle regulators differentially downregulated only in combination-treated tumors. Together, these findings identify a clinically tractable combination strategy for overcoming resistance to endocrine therapy and CDK4/6 inhibitors in breast cancer and provide insight into the potential mechanism of drug efficacy in targeting treatment-resistant disease. SIGNIFICANCE: Targeting transcription-associated CDK9 synergizes with CDK4/6 inhibitor to drive tumor regression in multiple models of endocrine- and palbociclib-resistant ER+ breast cancer, which could address the challenge of overcoming resistance in patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Receptores de Estrogênio/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Recidiva , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quinase 9 Dependente de Ciclina/genética
2.
NPJ Breast Cancer ; 8(1): 125, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446866

RESUMO

The selective oestrogen receptor (ER) degrader (SERD), fulvestrant, is limited in its use for the treatment of breast cancer (BC) by its poor oral bioavailability. Comparison of the orally bioavailable investigational SERD elacestrant, versus fulvestrant, demonstrates both drugs impact tumour growth of ER+ patient-derived xenograft models harbouring several ESR1 mutations but that elacestrant is active after acquired resistance to fulvestrant. In cell line models of endocrine sensitive and resistant breast cancer both drugs impact the ER-cistrome, ER-interactome and transcription of oestrogen-regulated genes similarly, confirming the anti-oestrogenic activity of elacestrant. The addition of elacestrant to CDK4/6 inhibitors enhances the antiproliferative effect compared to monotherapy. Furthermore, elacestrant inhibits the growth of palbociclib-resistant cells. Lastly, resistance to elacestrant involves Type-I and Type-II receptor tyrosine kinases which are amenable to therapeutic targeting. Our data support the wider clinical testing of elacestrant.

3.
Cancer Res ; 81(4): 847-859, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33509944

RESUMO

Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model in vivo-like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC. CREBBP protein expression in patient tumor samples was absent in 8% of TNBCs and at a high frequency in other tumors, including squamous lung cancer, where CREBBP-inactivating mutations are common. In TNBC, CREBBP alterations were associated with higher genomic heterogeneity and poorer patient survival and resulted in upregulation and dependency on a FOXM1 proliferative program. Targeting FOXM1-driven proliferation indirectly with clinical CDK4/6 inhibitors (CDK4/6i) selectively impaired growth in spheroids, cell line xenografts, and patient-derived models from multiple tumor types with CREBBP mutations or loss of protein expression. In conclusion, we have identified CREBBP as a novel driver in aggressive TNBC and identified an associated genetic vulnerability in tumor cells with alterations in CREBBP and provide a preclinical rationale for assessing CREBBP alterations as a biomarker of CDK4/6i response in a new patient population. SIGNIFICANCE: This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors.


Assuntos
Proteína de Ligação a CREB/fisiologia , Carcinogênese/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Proteína de Ligação a CREB/genética , Proliferação de Células/genética , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Genômica/métodos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Terapia de Alvo Molecular , Mutação , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Commun ; 11(1): 4053, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792481

RESUMO

A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Here we perform whole exome sequencing and gene expression analysis of matched primary breast tumours and bone metastasis-derived patient-derived xenografts (PDX). Transcriptomic analyses reveal enrichment of the G2/M checkpoint and up-regulation of Polo-like kinase 1 (PLK1) in PDX. PLK1 inhibition results in tumour shrinkage in highly proliferating CCND1-driven PDX, including different RB-positive PDX with acquired palbociclib resistance. Mechanistic studies in endocrine resistant cell lines, suggest an ER-independent function of PLK1 in regulating cell proliferation. Finally, in two independent clinical cohorts of ER positive BC, we find a strong association between high expression of PLK1 and a shorter metastases-free survival and poor response to anastrozole. In conclusion, our findings support clinical development of PLK1 inhibitors in patients with advanced CCND1-driven BC, including patients progressing on palbociclib treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Sequenciamento do Exoma/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Nus , Piperazinas/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pteridinas/uso terapêutico , Piridinas/uso terapêutico , Quinase 1 Polo-Like
5.
Oncogene ; 39(25): 4781-4797, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307447

RESUMO

Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)-positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of 'classical' oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB-signalling and G2/M-checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7. Noteworthy, sensitivity to CDK7 inhibition was associated with loss of ER and RB1 CN. Overall, we show that resistance to CDK4/6 inhibitors is dependent on kinase re-wiring and the redeployment of signalling cascades previously associated with endocrine resistance and highlights new therapeutic networks that can be exploited upon relapse after CDK4/6 inhibition.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Receptores de Estrogênio/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fulvestranto/administração & dosagem , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Interferência de RNA , Receptores de Estrogênio/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Tamoxifeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Breast Cancer Res ; 22(1): 14, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005287

RESUMO

After publication of the original article [1], we were notified that an author's surname has been erroneously spelled. Elisabetta Maragoni's family name should be replaced with Marangoni.

7.
Oncogene ; 39(3): 651-663, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530935

RESUMO

The CDK7 inhibitors (CDK7i) ICEC0942 and THZ1, are promising new cancer therapeutics. Resistance to targeted drugs frequently compromises cancer treatment. We sought to identify mechanisms by which cancer cells may become resistant to CDK7i. Resistant lines were established through continuous drug selection. ABC-transporter copy number, expression and activity were examined using real-time PCR, immunoblotting and flow cytometry. Drug responses were measured using growth assays. ABCB1 was upregulated in ICEC0942-resistant cells and there was cross-resistance to THZ1. THZ1-resistant cells upregulated ABCG2 but remained sensitive to ICEC0942. Drug resistance in both cell lines was reversible upon inhibition of ABC-transporters. CDK7i response was altered in adriamycin- and mitoxantrone-resistant cell lines demonstrating ABC-transporter upregulation. ABCB1 expression correlated with ICEC0942 and THZ1 response, and ABCG2 expression with THZ2 response, in a panel of cancer cell lines. We have identified ABCB1 upregulation as a common mechanism of resistance to ICEC0942 and THZ1, and confirmed that ABCG2 upregulation is a mechanism of resistance to THZ1. The identification of potential mechanisms of CDK7i resistance and differences in susceptibility of ICEC0942 and THZ1 to ABC-transporters, may help guide their future clinical use.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Seleção de Pacientes , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Quinase Ativadora de Quinase Dependente de Ciclina
8.
J Mol Diagn ; 22(1): 111-121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669227

RESUMO

Mutations in the ligand-binding domain (LBD) of the ESR1 gene result in resistance to estrogen deprivation therapy (EDT) in breast cancer. Their detection might enable optimization of therapy strategies. However, the predictive utility of the primary tumor (PT) is limited, and obtaining serial biopsies of metastatic lesions is challenging. To underline their application as a liquid biopsy, single circulating tumor cells (CTCs) were analyzed with a next-generation sequencing approach for the ESR1 coding region. CTCs from 46 metastatic luminal breast cancer patients were enriched using CellSearch system and isolated by micromanipulation. Their genomic DNA was amplified and the ESR1 gene was sequenced. Furthermore, tissue samples from corresponding PTs and/or metastatic lesions were investigated. ESR1 mutations were detected in 12 patients-exclusively in patients treated with EDT (P = 0.048). In seven cases mutations were located in the hotspot regions in the LBD. Six novel mutations were identified. ESR1 mutations were absent in PT tissue samples and were detected only in metastases obtained after CTC characterization. Single-cell CTC analysis for ESR1 mutations could be of clinical value to identify patients who progress under EDT and therefore benefit from an early switch to an alternative endocrine therapy or other treatment regimens. Furthermore, our data indicate that mutations outside the LBD's hotspot regions might also contribute to resistance to EDT.


Assuntos
Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Mutação , Células Neoplásicas Circulantes , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Pessoa de Meia-Idade , Análise de Célula Única
9.
Breast Cancer Res ; 21(1): 135, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801615

RESUMO

BACKGROUND: Endocrine therapies are still the main strategy for the treatment of oestrogen receptor-positive (ER+) breast cancers (BC), but resistance remains problematic. Cross-talk between ER and PI3K/AKT/mTORC has been associated with ligand-independent transcription of ER. We have previously reported the anti-proliferative effects of the combination of everolimus (an mTORC1 inhibitor) with endocrine therapy in resistance models, but potential routes of escape via AKT signalling can lead to resistance; therefore, the use of dual mTORC1/2 inhibitors has met with significant interest. METHODS: To address this, we tested the effect of vistusertib, a dual mTORC1 and mTORC2 inhibitor, in a panel of endocrine-resistant and endocrine-sensitive ER+ BC cell lines, with varying PTEN, PIK3CA and ESR1 mutation status. End-points included proliferation, cell signalling, cell cycle and effect on ER-mediated transcription. Two patient-derived xenografts (PDX) modelling endocrine resistance were used to assess the efficacy of vistusertib, fulvestrant or the combination on tumour progression, and biomarker studies were conducted using immunohistochemistry and RNA-seq technologies. RESULTS: Vistusertib caused a dose-dependent decrease in proliferation of all the cell lines tested and reduced abundance of mTORC1, mTORC2 and cell cycle markers, but caused an increase in abundance of EGFR, IGF1R and ERBB3 in a context-dependent manner. ER-mediated transcription showed minimal effect of vistusertib. Combined therapy of vistusertib with fulvestrant showed synergy in two ER+ PDX models of resistance to endocrine therapy and delayed tumour progression after cessation of therapy. CONCLUSIONS: These data support the notion that models of acquired endocrine resistance may have a different sensitivity to mTOR inhibitor/endocrine therapy combinations.

10.
Cell Rep ; 29(4): 889-903.e10, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644911

RESUMO

Notwithstanding the positive clinical impact of endocrine therapies in estrogen receptor-alpha (ERα)-positive breast cancer, de novo and acquired resistance limits the therapeutic lifespan of existing drugs. Taking the position that resistance is nearly inevitable, we undertook a study to identify and exploit targetable vulnerabilities that were manifest in endocrine therapy-resistant disease. Using cellular and mouse models of endocrine therapy-sensitive and endocrine therapy-resistant breast cancer, together with contemporary discovery platforms, we identified a targetable pathway that is composed of the transcription factors FOXA1 and GRHL2, a coregulated target gene, the membrane receptor LYPD3, and the LYPD3 ligand, AGR2. Inhibition of the activity of this pathway using blocking antibodies directed against LYPD3 or AGR2 inhibits the growth of endocrine therapy-resistant tumors in mice, providing the rationale for near-term clinical development of humanized antibodies directed against these proteins.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Camundongos , Mucoproteínas/imunologia , Mucoproteínas/metabolismo , Proteínas Oncogênicas/imunologia , Proteínas Oncogênicas/metabolismo
11.
Cancer Discov ; 8(9): 1176-1193, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29991605

RESUMO

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/administração & dosagem , Receptor alfa de Estrogênio/antagonistas & inibidores , Indazóis/administração & dosagem , Mutação , Administração Oral , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisteína/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Indazóis/química , Indazóis/farmacologia , Células MCF-7 , Camundongos , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Br J Cancer ; 119(3): 313-322, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29991699

RESUMO

BACKGROUND: Resistance to endocrine therapy remains a major clinical problem in the treatment of oestrogen-receptor positive (ER+) breast cancer. Studies show androgen-receptor (AR) remains present in 80-90% of metastatic breast cancers providing support for blockade of AR-signalling. However, clinical studies with abiraterone, which blocks cytochrome P450 17A1 (CYP17A1) showed limited benefit. METHODS: In order to address this, we assessed the impact of abiraterone on cell-viability, cell-death, ER-mediated transactivation and recruitment to target promoters. together with ligand-binding assays in a panel of ER+ breast cancer cell lines that were either oestrogen-dependent, modelling endocrine-sensitive disease, or oestrogen-independent modelling relapse on an aromatase inhibitor. The latter, harboured wild-type (wt) or naturally occurring ESR1 mutations. RESULTS: Similar to oestrogen, abiraterone showed paradoxical impact on proliferation by stimulating cell growth or death, depending on whether the cells are hormone-dependent or have undergone prolonged oestrogen-deprivation, respectively. Abiraterone increased ER-turnover, induced ER-mediated transactivation and ER-degradation via the proteasome. CONCLUSIONS: Our study confirms the oestrogenic activity of abiraterone and highlights its differential impact on cells dependent on oestrogen for their proliferation vs. those that are ligand-independent and harbour wt or mutant ESR1. These properties could impact the clinical efficacy of abiraterone in breast cancer.


Assuntos
Androstenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Apoptose/efeitos dos fármacos , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Mutação , Metástase Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , Receptores Androgênicos/genética , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia
13.
Breast Cancer Res ; 20(1): 44, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880014

RESUMO

BACKGROUND: Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER+) breast cancer (BC). However, resistance remains problematic largely due to enhanced cross-talk between ER and growth factor pathways, circumventing the need for steroid hormones. Previously, we reported the anti-proliferative effect of everolimus (RAD001-mTORC1 inhibitor) with endocrine therapy in resistance models; however, potential routes of escape from treatment via ERBB2/3 signalling were observed. We hypothesised that combined targeting of three cellular nodes (ER, ERBB, and mTORC1) may provide enhanced long-term clinical utility. METHODS: A panel of ER+ BC cell lines adapted to long-term oestrogen deprivation (LTED) and expressing ESR1 wt or ESR1 Y537S , modelling acquired resistance to an aromatase-inhibitor (AI), were treated in vitro with a combination of RAD001 and neratinib (pan-ERBB inhibitor) in the presence or absence of oestradiol (E2), tamoxifen (4-OHT), or fulvestrant (ICI182780). End points included proliferation, cell signalling, cell cycle, and effect on ER-mediated transactivation. An in-vivo model of AI resistance was treated with monotherapies and combinations to assess the efficacy in delaying tumour progression. RNA-seq analysis was performed to identify changes in global gene expression as a result of the indicated therapies. RESULTS: Here, we show RAD001 and neratinib (pan-ERBB inhibitor) caused a concentration-dependent decrease in proliferation, irrespective of the ESR1 mutation status. The combination of either agent with endocrine therapy further reduced proliferation but the maximum effect was observed with a triple combination of RAD001, neratinib, and endocrine therapy. In the absence of oestrogen, RAD001 caused a reduction in ER-mediated transcription in the majority of the cell lines, which associated with a decrease in recruitment of ER to an oestrogen-response element on the TFF1 promoter. Contrastingly, neratinib increased both ER-mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001. CONCLUSIONS: Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Estradiol/farmacologia , Estrogênios/metabolismo , Everolimo/farmacologia , Feminino , Fulvestranto/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , Quinolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia
14.
Nat Commun ; 8(1): 1865, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192207

RESUMO

Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio/genética , Linhagem Celular Tumoral , Estradiol/uso terapêutico , Feminino , Fulvestranto , Humanos , Células MCF-7 , Mutação , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/uso terapêutico
15.
PLoS One ; 11(6): e0157397, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27308830

RESUMO

Despite the effectiveness of endocrine therapies in estrogen receptor positive (ER+) breast cancer, approximately 40% of patients relapse. Previously, we identified the Focal-adhesion kinase canonical pathway as a major contributor of resistance to estrogen deprivation and cellular-sarcoma kinase (c-src) as a dominant gene in this pathway. Dasatinib, a pan-src inhibitor, has recently been used in clinical trials to treat ER+ patients but has shown mixed success. In the following study, using isogenic cell line models, we provide a potential explanation for these findings and suggest a sub-group that may benefit. A panel of isogenic cell lines modelling resistance to aromatase inhibitors (LTED) and tamoxifen (TAMR) were assessed for response to dasatinib ± endocrine therapy. Dasatinib caused a dose-dependent decrease in proliferation in MCF7-TAMR cells and resensitized them to tamoxifen and fulvestrant but not in HCC1428-TAMR. In contrast, in estrogen-deprived conditions, dasatinib increased the proliferation rate of parental-MCF7 cells and had no effect on MCF7-LTED or HCC1428-LTED. Treatment with dasatinib caused a decrease in src-phosphorylation and inhibition of downstream pathways, including AKT and ERK1/2 in all cell lines tested, but only the MCF7-TAMR showed a concomitant decrease in markers of cell cycle progression. Inhibition of src also caused a significant decrease in cell migration in both MCF7-LTED and MCF7-TAMR cells. Finally, we showed that, in MCF7-TAMR cells, in contrast to tamoxifen sensitive cell lines, ER is expressed throughout the cell rather than being restricted to the nucleus and that treatment with dasatinib resulted in nuclear shuttling of ER, which was associated with an increase in ER-mediated transcription. These data suggest that src has differential effects in endocrine-resistant cell lines, particularly in tamoxifen resistant models, with low ER genomic activity, providing further evidence of the importance of patient selection for clinical trials testing dasatinib utility in ER+ breast cancer.


Assuntos
Antineoplásicos Hormonais/farmacologia , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/genética , Quinases da Família src/antagonistas & inibidores , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Fulvestranto , Humanos , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Tamoxifeno/farmacologia , Ativação Transcricional , Quinases da Família src/genética , Quinases da Família src/metabolismo
16.
Breast Cancer Res ; 18(1): 58, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246191

RESUMO

BACKGROUND: Therapies targeting estrogenic stimulation in estrogen receptor-positive (ER+) breast cancer (BC) reduce mortality, but resistance remains a major clinical problem. Molecular studies have shown few high-frequency mutations to be associated with endocrine resistance. In contrast, expression profiling of primary ER+ BC samples has identified several promising signatures/networks for targeting. METHODS: To identify common adaptive mechanisms associated with resistance to aromatase inhibitors (AIs), we assessed changes in global gene expression during adaptation to long-term estrogen deprivation (LTED) in a panel of ER+ BC cell lines cultured in 2D on plastic (MCF7, T47D, HCC1428, SUM44 and ZR75.1) or in 3D on collagen (MCF7) to model the stromal compartment. Furthermore, dimethyl labelling followed by LC-MS/MS was used to assess global changes in protein abundance. The role of target genes/proteins on proliferation, ER-mediated transcription and recruitment of ER to target gene promoters was analysed. RESULTS: The cholesterol biosynthesis pathway was the common upregulated pathway in the ER+ LTED but not the ER- LTED cell lines, suggesting a potential mechanism dependent on continued ER expression. Targeting the individual genes of the cholesterol biosynthesis pathway with siRNAs caused a 30-50 % drop in proliferation. Further analysis showed increased expression of 25-hydroxycholesterol (HC) in the MCF7 LTED cells. Exogenous 25-HC or 27-HC increased ER-mediated transcription and expression of the endogenous estrogen-regulated gene TFF1 in ER+ LTED cells but not in the ER- LTED cells. Additionally, recruitment of the ER and CREB-binding protein (CBP) to the TFF1 and GREB1 promoters was increased upon treatment with 25-HC and 27-HC. In-silico analysis of two independent studies of primary ER+ BC patients treated with neoadjuvant AIs showed that increased expression of MSMO1, EBP, LBR and SQLE enzymes, required for cholesterol synthesis and increased in our in-vitro models, was significantly associated with poor response to endocrine therapy. CONCLUSION: Taken together, these data provide support for the role of cholesterol biosynthesis enzymes and the cholesterol metabolites, 25-HC and 27-HC, in a novel mechanism of resistance to endocrine therapy in ER+ BC that has potential as a therapeutic target.


Assuntos
Antineoplásicos Hormonais/farmacologia , Vias Biossintéticas , Neoplasias da Mama/metabolismo , Colesterol/biossíntese , Resistencia a Medicamentos Antineoplásicos , Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ésteres do Colesterol/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo , Prognóstico , Proteoma , Proteômica/métodos , Interferência de RNA , Transcriptoma , Resultado do Tratamento
17.
Cancer Res ; 76(8): 2301-13, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27020857

RESUMO

Small-molecule inhibitors of the CDK4/6 cell-cycle kinases have shown clinical efficacy in estrogen receptor (ER)-positive metastatic breast cancer, although their cytostatic effects are limited by primary and acquired resistance. Here we report that ER-positive breast cancer cells can adapt quickly to CDK4/6 inhibition and evade cytostasis, in part, via noncanonical cyclin D1-CDK2-mediated S-phase entry. This adaptation was prevented by cotreatment with hormone therapies or PI3K inhibitors, which reduced the levels of cyclin D1 (CCND1) and other G1-S cyclins, abolished pRb phosphorylation, and inhibited activation of S-phase transcriptional programs. Combined targeting of both CDK4/6 and PI3K triggered cancer cell apoptosis in vitro and in patient-derived tumor xenograft (PDX) models, resulting in tumor regression and improved disease control. Furthermore, a triple combination of endocrine therapy, CDK4/6, and PI3K inhibition was more effective than paired combinations, provoking rapid tumor regressions in a PDX model. Mechanistic investigations showed that acquired resistance to CDK4/6 inhibition resulted from bypass of cyclin D1-CDK4/6 dependency through selection of CCNE1 amplification or RB1 loss. Notably, although PI3K inhibitors could prevent resistance to CDK4/6 inhibitors, they failed to resensitize cells once resistance had been acquired. However, we found that cells acquiring resistance to CDK4/6 inhibitors due to CCNE1 amplification could be resensitized by targeting CDK2. Overall, our results illustrate convergent mechanisms of early adaptation and acquired resistance to CDK4/6 inhibitors that enable alternate means of S-phase entry, highlighting strategies to prevent the acquisition of therapeutic resistance to these agents. Cancer Res; 76(8); 2301-13. ©2016 AACR.


Assuntos
Neoplasias da Mama/enzimologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Xenoenxertos , Humanos , Camundongos , Piperazinas/uso terapêutico , Piridinas/uso terapêutico
18.
Mol Cancer Ther ; 14(9): 2035-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116361

RESUMO

PI3K/AKT/mTOR signaling plays an important role in breast cancer. Its interaction with estrogen receptor (ER) signaling becomes more complex and interdependent with acquired endocrine resistance. Targeting mTOR combined with endocrine therapy has shown clinical utility; however, a negative feedback loop exists downstream of PI3K/AKT/mTOR. Direct blockade of AKT together with endocrine therapy may improve breast cancer treatment. AZD5363, a novel pan-AKT kinase catalytic inhibitor, was examined in a panel of ER(+) breast cancer cell lines (MCF7, HCC1428, T47D, ZR75.1) adapted to long-term estrogen deprivation (LTED) or tamoxifen (TamR). AZD5363 caused a dose-dependent decrease in proliferation in all cell lines tested (GI50 < 500 nmol/L) except HCC1428 and HCC1428-LTED. T47D-LTED and ZR75-LTED were the most sensitive of the lines (GI50 ∼ 100 nmol/L). AZD5363 resensitized TamR cells to tamoxifen and acted synergistically with fulvestrant. AZD5363 decreased p-AKT/mTOR targets leading to a reduction in ERα-mediated transcription in a context-specific manner and concomitant decrease in recruitment of ER and CREB-binding protein (CBP) to estrogen response elements located on the TFF1, PGR, and GREB1 promoters. Furthermore, AZD5363 reduced expression of cell-cycle-regulatory proteins. Global gene expression highlighted ERBB2-ERBB3, ERK5, and IGFI signaling pathways driven by MYC as potential feedback-loops. Combined treatment with AZD5363 and fulvestrant showed synergy in an ER(+) patient-derived xenograft and delayed tumor progression after cessation of therapy. These data support the combination of AZD5363 with fulvestrant as a potential therapy for breast cancer that is sensitive or resistant to E-deprivation or tamoxifen and that activated AKT is a determinant of response, supporting the need for clinical evaluation.


Assuntos
Antineoplásicos Hormonais/farmacologia , Resistencia a Medicamentos Antineoplásicos , Estradiol/análogos & derivados , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptores de Estrogênio/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Sinergismo Farmacológico , Estradiol/farmacologia , Feminino , Fulvestranto , Perfilação da Expressão Gênica , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Breast Cancer Res ; 16(5): 447, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25358600

RESUMO

INTRODUCTION: Endocrine therapies target oestrogenic stimulation of breast cancer (BC) growth, but resistance remains problematic. Our aims in this study were (1) to identify genes most strongly associated with resistance to endocrine therapy by intersecting global gene transcription data from patients treated presurgically with the aromatase inhibitor anastrazole with those from MCF7 cells adapted to long-term oestrogen deprivation (LTED) (2) to assess the clinical value of selected genes in public clinical data sets and (3) to determine the impact of targeting these genes with novel agents. METHODS: Gene expression and Ki67 data were available from 69 postmenopausal women with oestrogen receptor-positive (ER+) early BC, at baseline and 2 weeks after anastrazole treatment, and from cell lines adapted to LTED. The functional consequences of target genes on proliferation, ER-mediated transcription and downstream cell signalling were assessed. RESULTS: By intersecting genes predictive of a poor change in Ki67 with those upregulated in LTED cells, we identified 32 genes strongly correlated with poor antiproliferative response that were associated with inflammation and/or immunity. In a panel of LTED cell lines, C-X-C chemokine receptor type 7 (CXCR7) and CXCR4 were upregulated compared to their wild types (wt), and CXCR7, but not CXCR4, was associated with reduced relapse-free survival in patients with ER+ BC. The CXCR4 small interfering RNA variant (siCXCR4) had no specific effect on the proliferation of wt-SUM44, wt-MCF7 and their LTED derivatives. In contrast, siCXCR7, as well as CCX733, a CXCR7 antagonist, specifically suppressed the proliferation of MCF7-LTED cells. siCXCR7 suppressed proteins associated with G1/S transition and inhibited ER transactivation in MCF7-LTED, but not wt-MCF7, by impeding association between ER and proline-, glutamic acid- and leucine-rich protein 1, an ER coactivator. CONCLUSIONS: These data highlight CXCR7 as a potential therapeutic target warranting clinical investigation in endocrine-resistant BC.


Assuntos
Antineoplásicos Hormonais/farmacologia , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Receptores CXCR/metabolismo , Receptores de Estrogênio/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Apoptose , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Fosforilação , Pós-Menopausa , Processamento de Proteína Pós-Traducional , Receptores CXCR/genética , Ativação Transcricional
20.
Cancer Res ; 73(12): 3783-95, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23650283

RESUMO

Most breast cancers at diagnosis are estrogen receptor-positive (ER(+)) and depend on estrogen for growth and survival. Blocking estrogen biosynthesis by aromatase inhibitors has therefore become a first-line endocrine therapy for postmenopausal women with ER(+) breast cancers. Despite providing substantial improvements in patient outcome, aromatase inhibitor resistance remains a major clinical challenge. The receptor tyrosine kinase, RET, and its coreceptor, GFRα1, are upregulated in a subset of ER(+) breast cancers, and the RET ligand, glial-derived neurotrophic factor (GDNF) is upregulated by inflammatory cytokines. Here, we report the findings of a multidisciplinary strategy to address the impact of GDNF-RET signaling in the response to aromatase inhibitor treatment. In breast cancer cells in two-dimensional and three-dimensional culture, GDNF-mediated RET signaling is enhanced in a model of aromatase inhibitor resistance. Furthermore, GDNF-RET signaling promoted the survival of aromatase inhibitor-resistant cells and elicited resistance in aromatase inhibitor-sensitive cells. Both these effects were selectively reverted by the RET kinase inhibitor, NVP-BBT594. Gene expression profiling in ER(+) cancers defined a proliferation-independent GDNF response signature that prognosed poor patient outcome and, more importantly, predicted poor response to aromatase inhibitor treatment with the development of resistance. We validated these findings by showing increased RET protein expression levels in an independent cohort of aromatase inhibitor-resistant patient specimens. Together, our results establish GDNF-RET signaling as a rational therapeutic target to combat or delay the onset of aromatase inhibitor resistance in breast cancer.


Assuntos
Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inibidores da Aromatase/uso terapêutico , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Estimativa de Kaplan-Meier , Letrozol , Células MCF-7 , Pessoa de Meia-Idade , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Análise de Sequência com Séries de Oligonucleotídeos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/genética , Pirimidinas/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Triazóis/farmacologia , Triazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA