Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894817

RESUMO

Colon cancer is a leading cause of death worldwide. Identification of new molecular factors governing the invasiveness of colon cancer holds promise in developing screening and targeted therapeutic methods. The Tyrosine Kinase Substrate with four SH3 domains (TKS4) and the CD2-associated protein (CD2AP) have previously been linked to dynamic actin assembly related processes and cancer cell migration, although their co-instructive role during tumor formation remained unknown. Therefore, this study was designed to investigate the TKS4-CD2AP interaction and study the interdependent effect of TKS4/CD2AP on oncogenic events. We identified CD2AP as a novel TKS4 interacting partner via co-immunoprecipitation-mass spectrometry methods. The interaction was validated via Western blot (WB), immunocytochemistry (ICC) and proximity ligation assay (PLA). The binding motif of CD2AP was explored via peptide microarray. To uncover the possible cooperative effects of TKS4 and CD2AP in cell movement and in epithelial-mesenchymal transition (EMT), we performed gene silencing and overexpressing experiments. Our results showed that TKS4 and CD2AP form a scaffolding protein complex and that they can regulate migration and EMT-related pathways in HCT116 colon cancer cells. This is the first study demonstrating the TKS4-CD2AP protein-protein interaction in vitro, their co-localization in intact cells, and their potential interdependent effects on partial-EMT in colon cancer.


Assuntos
Neoplasias do Colo , Transição Epitelial-Mesenquimal , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Neoplasias do Colo/genética , Proteínas do Citoesqueleto/metabolismo
2.
Nucleic Acids Res ; 50(D1): D1508-D1514, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34643700

RESUMO

Stimulated by the growing interest in the role of dNTP pools in physiological and malignant processes, we established dNTPpoolDB, the database that offers access to quantitative data on dNTP pools from a wide range of species, experimental and developmental conditions (https://dntppool.org/). The database includes measured absolute or relative cellular levels of the four canonical building blocks of DNA and of exotic dNTPs, as well. In addition to the measured quantity, dNTPpoolDB contains ample information on sample source, dNTP quantitation methods and experimental conditions including any treatments and genetic manipulations. Functions such as the advanced search offering multiple choices from custom-built controlled vocabularies in 15 categories in parallel, the pairwise comparison of any chosen pools, and control-treatment correlations provide users with the possibility to quickly recognize and graphically analyse changes in the dNTP pools in function of a chosen parameter. Unbalanced dNTP pools, as well as the balanced accumulation or depletion of all four dNTPs result in genomic instability. Accordingly, key roles of dNTP pool homeostasis have been demonstrated in cancer progression, development, ageing and viral infections among others. dNTPpoolDB is designated to promote research in these fields and fills a longstanding gap in genome metabolism research.


Assuntos
Bases de Dados Genéticas , Desoxirribonucleotídeos/classificação , Instabilidade Genômica/genética , Neoplasias/genética , Replicação do DNA/genética , Curadoria de Dados , Desoxirribonucleotídeos/genética , Humanos , Neoplasias/classificação , Neoplasias/patologia
3.
Hepatology ; 70(2): 532-546, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30153342

RESUMO

The interaction between RNA-binding proteins (RBPs) and RNA plays an important role in regulating cellular function. However, decoding genome-wide protein-RNA regulatory networks as well as how cancer-related mutations impair RNA regulatory activities in hepatocellular carcinoma (HCC) remains mostly undetermined. We explored the genetic alteration patterns of RBPs and found that deleterious mutations are likely to occur on the surface of RBPs. We then constructed protein-RNA interactome networks by integration of target binding screens and expression profiles. Network analysis highlights regulatory principles among interacting RBPs. In addition, somatic mutations selectively target functionally important genes (cancer genes, core fitness genes, or conserved genes) and perturb the RBP-gene regulatory networks in cancer. These regulatory patterns were further validated using independent data. A computational method (Mutational Effect on RNA Interactome Topology) and a web-based, user-friendly resource were further proposed to analyze the RBP-gene regulatory networks across cancer types. Pan-cancer analysis also suggests that cancer cells selectively target "vulnerability" genes to perturb protein-RNA interactome that is involved in cancer hallmark-related functions. Specifically, we experimentally validated four pairs of RBP-gene interactions perturbed by mutations in HCC, which play critical roles in cell proliferation. Based on the expression of perturbed RBP and target genes, we identified three subtypes of HCC with different survival rates. Conclusion: Our results provide a valuable resource for characterizing somatic mutation-perturbed protein-RNA regulatory networks in HCC, yielding valuable insights into the genotype-phenotype relationships underlying human cancer, and potential biomarkers for precision medicine.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mutação , Proteínas de Ligação a RNA/genética , RNA/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Proliferação de Células , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Mapas de Interação de Proteínas , Taxa de Sobrevida
4.
mBio ; 9(1)2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362230

RESUMO

Pathogens frequently employ eukaryotic linear motif (ELM)-rich intrinsically disordered proteins (IDPs) to perturb and hijack host cell networks for a productive infection. Mycobacterium tuberculosis has a relatively high percentage of IDPs in its proteome, the significance of which is not known. The Mycobacterium-specific PE-PPE protein family has several members with unusually high levels of structural disorder and disorder-promoting Ala/Gly residues. PPE37 protein, a member of this family, carries an N-terminal PPE domain capable of iron binding, two transmembrane domains, and a disordered C-terminal segment harboring ELMs and a eukaryotic nuclear localization signal (NLS). PPE37, expressed as a function of low iron stress, was cleaved by M. tuberculosis protease into N- and C-terminal segments. A recombinant N-terminal segment (P37N) caused proliferation and differentiation of monocytic THP-1 cells, into CD11c, DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin)-positive semimature dendritic cells exhibiting high interleukin-10 (IL-10) but negligible IL-12 and also low tumor necrosis factor alpha (TNF-α) secretion-an environment suitable for maintaining tolerogenic immune cells. The C-terminal segment entered the macrophage nucleus and induced caspase-3-dependent apoptosis of host cells. Mice immunized with recombinant PPE37FL and PPE37N evoked strong anti-inflammatory response, validating the in vitro immunostimulatory effect. Analysis of the IgG response of PPE37FL and PPE37N revealed significant immunoreactivities in different categories of TB patients, viz. pulmonary TB (PTB) and extrapulmonary TB (EPTB), vis-a-vis healthy controls. These results support the role of IDPs in performing contrasting activities to modulate the host processes, possibly through molecular mimicry and cross talk in two spatially distinct host environments which may likely aid M. tuberculosis survival and pathogenesis.IMPORTANCE To hijack the human host cell machinery to enable survival inside macrophages, the pathogen Mycobacterium tuberculosis requires a repertoire of proteins that can mimic host protein function and modulate host cell machinery. Here, we have shown how a single protein can play multiple functions and hijack the host cell for the benefit of the pathogen. Full-length membrane-anchored PPE37 protein is cleaved into N- and C-terminal domains under iron-depleted conditions. The N-terminal domain facilitates the propathogen semimature tolerogenic state of dendritic cells, whereas the C-terminal segment is localized into host cell nucleus and induces apoptosis. The immune implications of these in vitro observations were assessed and validated in mice and also human TB patients. This study presents novel mechanistic insight adopted by M. tuberculosis to survive inside host cells.


Assuntos
Proteínas de Bactérias/imunologia , Células Dendríticas/imunologia , Proteínas de Ligação ao Ferro/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Anticorpos Antibacterianos/sangue , Apoptose , Proteínas de Bactérias/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Imunoglobulina G/sangue , Proteínas de Ligação ao Ferro/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/metabolismo
5.
Cell Rep ; 21(3): 798-812, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045845

RESUMO

It is increasingly appreciated that alternative splicing plays a key role in generating functional specificity and diversity in cancer. However, the mechanisms by which cancer mutations perturb splicing remain unknown. Here, we developed a network-based strategy, DrAS-Net, to investigate more than 2.5 million variants across cancer types and link somatic mutations with cancer-specific splicing events. We identified more than 40,000 driver variant candidates and their 80,000 putative splicing targets deregulated in 33 cancer types and inferred their functional impact. Strikingly, tumors with splicing perturbations show reduced expression of immune system-related genes and increased expression of cell proliferation markers. Tumors harboring different mutations in the same gene often exhibit distinct splicing perturbations. Further stratification of 10,000 patients based on their mutation-splicing relationships identifies subtypes with distinct clinical features, including survival rates. Our work reveals how single-nucleotide changes can alter the repertoires of splicing isoforms, providing insights into oncogenic mechanisms for precision medicine.


Assuntos
Processamento Alternativo/genética , Neoplasias/genética , Redes Reguladoras de Genes , Heterogeneidade Genética , Humanos , Internet , Mutação/genética , Neoplasias/imunologia , Fenótipo
6.
Nat Commun ; 4: 2741, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24225580

RESUMO

Protein function and dynamics are closely related; however, accurate dynamics information is difficult to obtain. Here based on a carefully assembled data set derived from experimental data for proteins in solution, we quantify backbone dynamics properties on the amino-acid level and develop DynaMine--a fast, high-quality predictor of protein backbone dynamics. DynaMine uses only protein sequence information as input and shows great potential in distinguishing regions of different structural organization, such as folded domains, disordered linkers, molten globules and pre-structured binding motifs of different sizes. It also identifies disordered regions within proteins with an accuracy comparable to the most sophisticated existing predictors, without depending on prior disorder knowledge or three-dimensional structural information. DynaMine provides molecular biologists with an important new method that grasps the dynamical characteristics of any protein of interest, as we show here for human p53 and E1A from human adenovirus 5.


Assuntos
Software , Algoritmos , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA