Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomed Pharmacother ; 176: 116921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870628

RESUMO

Pulp therapy has been emerged as a one of the efficient therapies in the field of endodontics. Among different types of new endodontic materials, pulpotec has been materialized as a recognized material for vital pulp therapy. However, its efficacy has been challenged due to lack of information about its cellular biocompatibility. This study evaluates the mechanistic biocompatibility of pulpotec cement with macrophage cells (RAW 264.7) at cellular and molecular level. The biocompatibility was evaluated using experimental and computational techniques like MTT assay, oxidative stress analysis and apoptosis analysis through flow cytometry and fluorescent microscopy. The results showed concentration-dependent cytotoxicity of pulpotec cement extract to RAW 264.7 cells with an LC 50 of X/10-X/20. The computational analysis depicted the molecular interaction of pulpotec cement extract components with metabolic proteins like Sod1 and p53. The study revealed the effects of Pulpotec cement's extract, showing a concentration-dependent induction of oxidative stress and apoptosis. These effects were due to influential structural and functional abnormalities in the Sod1 and p53 proteins, caused by their molecular interaction with internalized components of Pulpotec cement. The study provided a detailed view on the utility of Pulpotec in endodontic applications, highlighting its biomedical aspects.


Assuntos
Apoptose , Materiais Biocompatíveis , Macrófagos , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Sobrevivência Celular/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Superóxido Dismutase-1/metabolismo
2.
Cancer Lett ; 594: 216990, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801886

RESUMO

Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.


Assuntos
Administração Metronômica , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/administração & dosagem , Antineoplásicos/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos
3.
Cells ; 12(7)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048159

RESUMO

Cell fate determination is a complex process that is frequently described as cells traveling on rugged pathways, beginning with DNA damage response (DDR). Tumor protein p53 (p53) and phosphatase and tensin homolog (PTEN) are two critical players in this process. Although both of these proteins are known to be key cell fate regulators, the exact mechanism by which they collaborate in the DDR remains unknown. Thus, we propose a dynamic Boolean network. Our model incorporates experimental data obtained from NSCLC cells and is the first of its kind. Our network's wild-type system shows that DDR activates the G2/M checkpoint, and this triggers a cascade of events, involving p53 and PTEN, that ultimately lead to the four potential phenotypes: cell cycle arrest, senescence, autophagy, and apoptosis (quadra-stable dynamics). The network predictions correspond with the gain-and-loss of function investigations in the additional two cell lines (HeLa and MCF-7). Our findings imply that p53 and PTEN act as molecular switches that activate or deactivate specific pathways to govern cell fate decisions. Thus, our network facilitates the direct investigation of quadruplicate cell fate decisions in DDR. Therefore, we concluded that concurrently controlling PTEN and p53 dynamics may be a viable strategy for enhancing clinical outcomes.


Assuntos
Dano ao DNA , PTEN Fosfo-Hidrolase , Proteína Supressora de Tumor p53 , Humanos , Apoptose , Pontos de Checagem do Ciclo Celular , Células HeLa , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Biomed Pharmacother ; 159: 114269, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682246

RESUMO

Short nucleotide sequences like miRNA and siRNA have attracted a lot of interest in Oral-biome investigations. miRNA is a small class of non-coding RNA that regulates gene expression to provide effective regulation of post-transcription. On contrary, siRNA is 21-25 nucleotide dsRNA impairing gene function post-transcriptionally through inhibition of mRNA for homologous dependent gene silencing. This review highlights the application of miRNA in oral biome including oral cancer, dental implants, periodontal diseases, gingival fibroblasts, oral submucous fibrosis, radiation-induced oral mucositis, dental Pulp, and oral lichenoid disease. Moreover, we have also discussed the application of siRNA against the aforementioned disease along with the impact of miRNA and siRNA to the various pathways and molecular effectors pertaining to the dental diseases. The influence of upregulation and downregulation of molecular effector post-treatment with miRNA and siRNA and their impact on the clinical setting has been elucidated. Thus, the mentioned details on application of miRNA and siRNA will provide a novel gateway to the scholars to not only mitigate the long-lasting issue in dentistry but also develop new theragnostic approaches.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Inativação Gênica , Sequência de Bases , Fenótipo , Interferência de RNA
5.
Sci Rep ; 12(1): 18312, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316351

RESUMO

The lncRNA GAS5 acts as a tumor suppressor and is downregulated in gastric cancer (GC). In contrast, E2F1, an important transcription factor and tumor promoter, directly inhibits miR-34c expression in GC cell lines. Furthermore, in the corresponding GC cell lines, lncRNA GAS5 directly targets E2F1. However, lncRNA GAS5 and miR-34c remain to be studied in conjunction with GC. Here, we present a dynamic Boolean network to classify gene regulation between these two non-coding RNAs (ncRNAs) in GC. This is the first study to show that lncRNA GAS5 can positively regulate miR-34c in GC through a previously unknown molecular pathway coupling lncRNA/miRNA. We compared our network to several in-vivo/in-vitro experiments and obtained an excellent agreement. We revealed that lncRNA GAS5 regulates miR-34c by targeting E2F1. Additionally, we found that lncRNA GAS5, independently of p53, inhibits GC proliferation through the ATM/p38 MAPK signaling pathway. Accordingly, our results support that E2F1 is an engaging target of drug development in tumor growth and aggressive proliferation of GC, and favorable results can be achieved through tumor suppressor lncRNA GAS5/miR-34c axis in GC. Thus, our findings unlock a new avenue for GC treatment in response to DNA damage by these ncRNAs.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia
6.
Mater Today Bio ; 17: 100463, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36310541

RESUMO

Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.

7.
J Nanobiotechnology ; 20(1): 393, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045375

RESUMO

High-quality point-of-care is critical for timely decision of disease diagnosis and healthcare management. In this regard, biosensors have revolutionized the field of rapid testing and screening, however, are confounded by several technical challenges including material cost, half-life, stability, site-specific targeting, analytes specificity, and detection sensitivity that affect the overall diagnostic potential and therapeutic profile. Despite their advances in point-of-care testing, very few classical biosensors have proven effective and commercially viable in situations of healthcare emergency including the recent COVID-19 pandemic. To overcome these challenges functionalized magnetic nanoparticles (MNPs) have emerged as key players in advancing the biomedical and healthcare sector with promising applications during the ongoing healthcare crises. This critical review focus on understanding recent developments in theranostic applications of functionalized magnetic nanoparticles (MNPs). Given the profound global economic and health burden, we discuss the therapeutic impact of functionalized MNPs in acute and chronic diseases like small RNA therapeutics, vascular diseases, neurological disorders, and cancer, as well as for COVID-19 testing. Lastly, we culminate with a futuristic perspective on the scope of this field and provide an insight into the emerging opportunities whose impact is anticipated to disrupt the healthcare industry.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Nanopartículas de Magnetita , Nanopartículas , COVID-19/diagnóstico , Teste para COVID-19 , Doença Crônica , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanomedicina , Pandemias
8.
Proteins ; 90(9): 1617-1633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35384056

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with the most contagious variants, alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and Omicron (B.1.1.529) has continuously added a higher number of morbidity and mortality, globally. The present integrated bioinformatics-cheminformatics approach was employed to locate potent antiviral marine alkaloids that could be used against SARS-CoV-2. Initially, 57 antiviral marine alkaloids and two repurposing drugs were selected from an extensive literature review. Then, the putative target enzyme SARS-CoV-2 main protease (SARS-CoV-2-Mpro) was retrieved from the protein data bank and carried out a virtual screening-cum-molecular docking study with all candidates using PyRx 0.8 and AutoDock 4.2 software. Further, the molecular dynamics (MD) simulation of the two most potential alkaloids and a drug docking complex at 100 ns (with two ligand topology files from PRODRG and ATB server, separately), the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) free energy, and contributions of entropy were investigated. Then, the physicochemical-toxicity-pharmacokinetics-drug-likeness profiles, the frontier molecular orbitals energies (highest occupied molecular orbital, lowest unoccupied molecular orbital, and ΔE), and structural-activity relationship were assessed and analyzed. Based on binding energy, 8-hydroxymanzamine (-10.5 kcal/mol) and manzamine A (-10.1 kcal/mol) from all alkaloids with darunavir (-7.9 kcal/mol) and lopinavir (-7.4 kcal/mol) against SARS-CoV-2-Mpro were recorded. The MD simulation (RMSD, RMSF, Rg, H-bond, MM/PBSA binding energy) illustrated that the 8-hydroxymanzamine exhibits a static thermodynamic feature than the other two complexes. The predicted physicochemical, toxicity, pharmacokinetics, and drug-likeness profiles also revealed that the 8-hydroxymanzamine could be used as a potential lead candidate individually and/or synergistically with darunavir or lopinavir to combat SARS-CoV-2 infection after some pharmacological validation.


Assuntos
Alcaloides , Tratamento Farmacológico da COVID-19 , Alcaloides/farmacologia , Antivirais/química , Antivirais/farmacologia , Quimioinformática , Biologia Computacional , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Darunavir , Humanos , Lopinavir , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2
9.
Sci Rep ; 12(1): 4911, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318393

RESUMO

Transfection of tumor suppressor miRNAs such as miR-34a, miR-449a, and miR-16 with DNA damage can regulate apoptosis and senescence in cancer cells. miR-16 has been shown to influence autophagy in cervical cancer. However, the function of miR-34a and miR-449a in autophagy remains unknown. The functional and persistent G1/S checkpoint signaling pathways in HeLa cells via these three miRNAs, either synergistically or separately, remain a mystery. As a result, we present a synthetic Boolean network of the functional G1/S checkpoint regulation, illustrating the regulatory effects of these three miRNAs. To our knowledge, this is the first synthetic Boolean network that demonstrates the advanced role of these miRNAs in cervical cancer signaling pathways reliant on or independent of p53, such as MAPK or AMPK. We compared our estimated probability to the experimental data and found reasonable agreement. Our findings indicate that miR-34a or miR-16 may control senescence, autophagy, apoptosis, and the functional G1/S checkpoint. Additionally, miR-449a can regulate just senescence and apoptosis on an individual basis. MiR-449a can coordinate autophagy in HeLa cells in a synergistic manner with miR-16 and/or miR-34a.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/genética
10.
J Nanobiotechnology ; 20(1): 152, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331246

RESUMO

Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related problems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, temperature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.


Assuntos
Nanopartículas , Neoplasias , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Temperatura
11.
Autoimmun Rev ; 20(11): 102941, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34508917

RESUMO

Although vaccination represents the most promising way to stop or contain the coronavirus disease 2019 (COVID-19) pandemic and safety and effectiveness of available vaccines were proven, a small number of individuals who received anti-SARS-CoV-2 vaccines developed a prothrombotic syndrome. Vaccine-induced immune thrombotic thrombocytopenia (VITT) can be triggered by the adenoviral vector-based vaccine, whereas lipid nanoparticle-mRNA-based vaccines can induce rare cases of deep vein thrombosis (DVT). Although the main pathogenic mechanisms behind this rare phenomenon have not yet been identified, both host and vaccine factors might be involved, with pathology at least in part being related to the vaccine-triggered autoimmune reaction. In this review, we are considering some aspects related to pathogenesis, major risk factors, as well as peculiarities of diagnosis and treatment of this rare condition.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Autoimunidade , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação/efeitos adversos
12.
Biomolecules ; 11(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356644

RESUMO

Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency (EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019 (COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an adverse effect occurring at a low frequency in some individuals after vaccination. The causes of such events may be related to SARS-CoV-2 spike protein interactions with different C-type lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after vaccine administration. In addition, immunological mechanisms elicited by viral vectors related to cellular delivery could play a relevant role in individuals with certain genetic backgrounds. Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers, and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation of existing vaccines.


Assuntos
Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Trombose/etiologia , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Vacina BNT162 , COVID-19/imunologia , ChAdOx1 nCoV-19 , Humanos , Fatores de Risco , SARS-CoV-2/imunologia , Fumantes , Glicoproteína da Espícula de Coronavírus/imunologia , Trombocitopenia/etiologia , Trombocitopenia/imunologia , Trombose/imunologia , Vacinação/efeitos adversos
13.
Future Oncol ; 17(29): 3873-3880, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34263659

RESUMO

The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.


Assuntos
Terapia de Alvo Molecular , Medicina de Precisão , Neoplasias da Próstata/terapia , Proteínas de Ligação a RNA/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia
14.
J Mol Biol ; 433(13): 166993, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33865867

RESUMO

It is known that insulin-degrading-enzyme (IDE) plays a crucial role in the clearance of Alzheimer's amyloid-ß (Aß). The cysteine-free IDE mutant (cf-E111Q-IDE) is catalytically inactive against insulin, but its effect on Aß degradation is unknown that would help in the allosteric modulation of the enzyme activity. Herein, the degradation of Aß(1-40) by cf-E111Q-IDE via a non-chaperone mechanism is demonstrated by NMR and LC-MS, and the aggregation of fragmented peptides is characterized using fluorescence and electron microscopy. cf-E111Q-IDE presented a reduced effect on the aggregation kinetics of Aß(1-40) when compared with the wild-type IDE. Whereas LC-MS and diffusion ordered NMR spectroscopy revealed the generation of Aß fragments by both wild-type and cf-E111Q-IDE. The aggregation propensities and the difference in the morphological phenotype of the full-length Aß(1-40) and its fragments are explained using multi-microseconds molecular dynamics simulations. Notably, our results reveal that zinc binding to Aß(1-40) inactivates cf-E111Q-IDE's catalytic function, whereas zinc removal restores its function as evidenced from high-speed AFM, electron microscopy, chromatography, and NMR results. These findings emphasize the catalytic role of cf-E111Q-IDE on Aß degradation and urge the development of zinc chelators as an alternative therapeutic strategy that switches on/off IDE's function.


Assuntos
Doença de Alzheimer/metabolismo , Insulisina/metabolismo , Proteínas Mutantes/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Biocatálise , Cromatografia Líquida de Alta Pressão , Humanos , Insulisina/química , Insulisina/genética , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Ligação Proteica , Proteólise , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
15.
Environ Pollut ; 267: 115482, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32889517

RESUMO

Extensive use of magnetic iron oxide (magnetite) nanoparticles (IONP) has raised concerns about their biocompatibility. It has also stimulated the search for its green synthesis with greater biocompatibility. Addressing the issue, this study investigates the molecular nanotoxicity of IONP with embryonic and adult zebrafish, and reveal novel green fabrication of iron oxide nanoparticles (P-IONP) using medicinal plant extract of Phyllanthus niruri. The synthesized P-IONP was having a size of 42 ± 08 nm and a zeta potential of -38 ± 06 mV with hydrodynamic diameter of 109 ± 09 nm and 90emu/g magnetic saturation value. High antibacterial efficacy of P-IONP was found against E.coli. Comparative in vivo biocompatibility assessment with zebrafish confirmed higher biocompatibility of P-IONP compared to commercial C-IONP in the relevance of mortality rate, hatching rate, heart rate, and morphological abnormalities. LC50 of P-IONP and C-IONP was 202 µg/ml and 126 µg/ml, respectively. Molecular nano-biocompatibility analysis revealed the phenomenon as an effect of induced apoptosis lead by dysregulation of induced oxidative stress due to structural and functional influence of IONP to Sod1 and Tp53 proteins through intrinsic atomic interaction.


Assuntos
Nanopartículas , Phyllanthus , Animais , Antibacterianos/toxicidade , Apoptose , Compostos Férricos/farmacologia , Estresse Oxidativo , Peixe-Zebra
16.
Sci Adv ; 6(28): eabb8097, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32691011

RESUMO

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 receptor binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher reliability.


Assuntos
Antivirais/farmacologia , Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Cisteína Endopeptidases/química , Desenho de Fármacos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/química , Pneumonia Viral/prevenção & controle , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química , Enzima de Conversão de Angiotensina 2 , Benzamidas , Benzazepinas , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Epitopos de Linfócito B/efeitos dos fármacos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/efeitos dos fármacos , Epitopos de Linfócito T/imunologia , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/imunologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Espiro/farmacologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
17.
Phys Chem Chem Phys ; 22(12): 6706-6715, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32162626

RESUMO

In the present study, we systematically investigated the adsorption mechanism of canonical DNA nucleobases and their two nucleobase pairs on a single-layer gallium sulfide (GaS) substrate using DFT+D3 methods. The GaS substrate has chemical interactions with molecules 0.02 |e| 0.11 |e| from molecules to the monolayer GaS surface. Due to the chemical interactions of adenine, cytosine, guanine, and thymine on the monolayer GaS surface, the work function is decreased by 0.69, 0.60, 0.97, and 0.20 eV, respectively. It is displayed that the bandgap of the monolayer GaS sheet can be significantly affected as induced molecular electronic states tend to appear near the Fermi level region due to chemical and physisorption mechanism. We have also investigated the transport properties of DNA nucleobases, namely, AT and GC pair molecules on the GaS surface, which shows significant reduction in the zero-bias transmission spectra. Moreover, with and without DNA nucleobases, namely, AT and GC pair molecules' absorptions on the GaS surface, clearly expressed in terms of distinct current signals, can be observed as ON and OFF states for this device. The distinctive nucleobase adsorption energies and different I-V responses may serve as potential probes for the selective detection of nucleobase molecules in imminent DNA sequencing applications based on a monolayer GaS surface.


Assuntos
Sequência de Bases , DNA/química , Gálio/química , Sulfetos/química , DNA/análise , Estrutura Molecular
18.
Ecotoxicol Environ Saf ; 192: 110321, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061978

RESUMO

Day to day consumption of black pepper raise concern about the detailed information about their medicinal, pharmaceutical values and knowledge about the biocompatibility with respect to ecosystem. This study investigates the in vivo selective molecular biocompatibility of its seed cover (SC) and seed core (SP) powder extract using embryonic zebrafish model. Gas chromatography mass spectrometry (GCMS) analysis of the extract prepared by grinding showed presence of different components with "piperine" as principle component. Biocompatibility analysis showed dose and time dependent selective effect of SC and SP with LC50 of 30.4 µg/ml and 35.6 µg/ml, respectively on survivability, hatching and heartbeat rate in embryonic zebrafish. Mechanistic investigation elucidated it as effect of accumulation and internalization of black pepper leading to their influence on structure and function of cellular proteins hatching enzyme (he1a), superoxide dismutase (sod1) and tumor protein (tp53) responsible for delayed hatching, oxidative stress induction and apoptosis. The study provided insight to selective biocompatibility of black pepper expedient to produce higher quality spices with respect to pharmaceutical, clinical and environmental aspects.


Assuntos
Alcaloides/química , Apoptose/efeitos dos fármacos , Benzodioxóis/química , Estresse Oxidativo/efeitos dos fármacos , Piper nigrum/toxicidade , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Alcaloides/análise , Animais , Benzodioxóis/análise , Piper nigrum/química , Piper nigrum/embriologia , Piperidinas/análise , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Alcamidas Poli-Insaturadas/análise , Sementes/química , Sementes/toxicidade , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
19.
Mater Sci Eng C Mater Biol Appl ; 104: 109932, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499934

RESUMO

Nanomaterial based paints are in current demand in the area of surface protective coatings due to the significant advances made to improve their antibacterial and anticorrosion characteristics. In this work, we have developed magnetic graphene oxide (MGO) paint with the incorporation of cobalt ferrite (CF) and graphene oxide (GO) along with paint materials by using high energy ball milling (HEBM). Morphological, elemental and functional analysis of the MGO paint is studied with ESEM, AFM, Raman, FTIR spectroscopy. EDS and PIXE methods are used for elemental analysis. Thermal analysis shows that the MGO film was stable up to 100 °C. The saturation magnetization of CF MNP is observed as 76 emu/g and it is reduced to 12 emu/g for MGP paint. The detailed antibacterial study of the prepared MGO paint has performed with S. typhimurium and E. coli. The dead-live assessment shows the dead population for S. typhimurium is superior up to 82% whereas it is 20% for E. coli. The morphological damage of bacterial cells is studied using SEM technique. Flow cytometry analysis of reactive oxygen species (ROS) generation experiments and computational analysis supported the proposed mechanism of induced ROS for the damage of bacterial membrane via interaction of GO and CF with bacterial proteins leading to alteration in their functionality. The observed results indicate that the prepared MGO paint could be a better candidate in the area of nano paint for surface protective coatings.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Compostos Férricos/síntese química , Grafite/síntese química , Nanopartículas de Magnetita/química , Via Secretória/efeitos dos fármacos , Antibacterianos/síntese química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/farmacologia , Cobalto/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos Férricos/farmacologia , Grafite/farmacologia , Humanos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície , Temperatura , Termogravimetria , Vibração
20.
Chem Biol Interact ; 297: 141-154, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30419219

RESUMO

The present study reports the regulation of cytotoxicity of Cu doped ZnO nanoparticles in macrophages (RAW 264.7) due to altered physiochemical properties changes like electrical properties by controlled doping of Cu in ZnO. Cu-doped ZnO nanoparticles were prepared by High Energy Ball Milling technique (HEBM) and formed single phase Zn1-xCuxO (x = 0.0, 0.01, 0.02, 0.03) were called as pure ZnO, Cu1%, 2%, 3% respectively. Hexagonal wurtzite structure with size range of 22-26 nm was verified. FE-SEM with EDX analysis indicated the Cu doping effect on the surface morphology of ZnO. Zeta potential of Zn1-xCuxO was found to be elevated with increase in doping percentage of Cu (-36.6 mV to +18.2 mV). Dielectric constant was found to be decreased with increasing doping percentage. Increase in doping percentage enhanced cytotoxicity of Zn1-xCuxO in macrophages with LC50 of 62 µg/ml, 51 µg/ml, 40 µg/ml, 32 µg/ml. Granularity change of macrophages suggested doping influenced cellular uptake as consequence of zeta potential and dielectric properties changes. 3% Cu doped ZnO shown a higher ROS signal and apoptosis than 2% and 1% Cu doping with exhibition of ROS scavenging nature leading to apoptosis of prepared Cu doped ZnO nanoparticles. Our findings revealed mechanism of cytotoxicity of Zn1-xCuxO as a consequence of alteration in electric properties eliciting ROS scavenging leading to higher apoptosis with increasing doping percentage of Cu in ZnO.


Assuntos
Apoptose/efeitos dos fármacos , Cobre/química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/toxicidade , Laranja de Acridina/química , Animais , Brometos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Condutividade Elétrica , Fluorescência , Camundongos , Nanotecnologia , Tamanho da Partícula , Células RAW 264.7 , Relação Estrutura-Atividade , Propriedades de Superfície , Óxido de Zinco/síntese química , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA