Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunology ; 171(1): 131-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858978

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) belongs to the oxytocinase subfamily of M1 aminopeptidases (M1APs), which are a diverse family of metalloenzymes involved in a wide range of functions and have been implicated in various chronic and infectious diseases of humans. ERAP1 trims antigenic precursors into correct sizes (8-10 residues long) for Major Histocompatibility Complex (MHC) presentation, by a unique molecular ruler mechanism in which it makes concurrent bindings to substrate N- and C-termini. We have previously determined four crystal structures of ERAP1 C-terminal regulatory domain (termed ERAP1_C domain) in complex with peptide carboxyl (PC)-ends that carry various anchor residues, and identified a specificity subsite for recognizing the PC anchor side chain, denoted as the SC subsite to follow the conventional notations: S1 site for P1, S2 site for P2, and so forth. In this study, we report studies on structure-guided mutational and hydrolysis kinetics, and peptide trimming assays to further examine the functional roles of this SC subsite. Most strikingly, a point mutation V737R results in a change of substrate preference from a hydrophobic to a negatively charged PC anchor residue; the latter is presumed to be a poor substrate for WT ERAP1. These studies validate the crystallographic observations that this SC subsite is directly involved in binding and recognition of the substrate PC anchor and presents a potential target to modulate MHC-restricted immunopeptidomes.


Assuntos
Aminopeptidases , Antígenos , Humanos , Aminopeptidases/genética , Aminopeptidases/química , Aminopeptidases/metabolismo , Antígenos/metabolismo , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Apresentação de Antígeno
2.
Protein Sci ; 28(6): 1013-1023, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30901125

RESUMO

Aspartylglucosaminuria (AGU) is an inherited disease caused by mutations in a lysosomal amidase called aspartylglucosaminidase (AGA) or glycosylasparaginase (GA). This disorder results in an accumulation of glycoasparagines in the lysosomes of virtually all cell types, with severe clinical symptoms affecting the central nervous system, skeletal abnormalities, and connective tissue lesions. GA is synthesized as a single-chain precursor that requires an intramolecular autoprocessing to form a mature amidase. Previously, we showed that a Canadian AGU mutation disrupts this obligatory intramolecular autoprocessing with the enzyme trapped as an inactive precursor. Here, we report biochemical and structural characterization of a model enzyme corresponding to a new American AGU allele, the T99K variant. Unlike other variants with known 3D structures, this T99K model enzyme still has autoprocessing capacity to generate a mature form. However, its amidase activity to digest glycoasparagines remains low, consistent with its association with AGU. We have determined a 1.5-Å-resolution structure of this new AGU model enzyme and built an enzyme-substrate complex to provide a structural basis to analyze the negative effects of the T99K point mutation on KM and kcat of the amidase. It appears that a "molecular clamp" capable of fixing local disorders at the dimer interface might be able to rescue the deficiency of this new AGU variant.


Assuntos
Aspartilglucosaminúria/enzimologia , Aspartilglucosilaminase/genética , Aspartilglucosilaminase/metabolismo , Variação Genética , Aspartilglucosaminúria/genética , Aspartilglucosilaminase/química , Glicopeptídeos/metabolismo , Células HeLa , Humanos , Hidrólise , Lisossomos/química , Lisossomos/metabolismo , Mutação , Conformação Proteica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA