Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 320(2): E270-E280, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166186

RESUMO

The G-protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of adeno-associated virus (AAV)-Cre-green fluorescent protein (GFP) into the DMH of Gqαflox/flox:G11α-/- mice. Compared with control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22°C), DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT uncoupling protein 1 (Ucp1) gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6°C for 5 h) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30°C). Thus our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.NEW & NOTEWORTHY This paper demonstrates that signaling within the dorsomedial hypothalamus via the G proteins Gqα and G11α, which couple cell surface receptors to the stimulation of phospholipase C, is critical for regulation of energy expenditure, thermoregulation by brown adipose tissue and the induction of white adipose tissue browning.


Assuntos
Doenças do Sistema Nervoso Autônomo/genética , Metabolismo Energético/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Hipotálamo/metabolismo , Obesidade/genética , Animais , Doenças do Sistema Nervoso Autônomo/metabolismo , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/fisiopatologia , Especificidade de Órgãos/genética , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
2.
Endocrinology ; 154(1): 550-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161871

RESUMO

Thyroid hormone serves many functions throughout brain development, but the mechanisms that control the timing of its actions in specific brain regions are poorly understood. In the cerebellum, thyroid hormone controls formation of the transient external germinal layer, which contains proliferative granule cell precursors, subsequent granule cell migration, and cerebellar foliation. We report that the thyroid hormone-inactivating type 3 deiodinase (encoded by Dio3) is expressed in the mouse cerebellum at embryonic and neonatal stages, suggesting a need to protect cerebellar tissues from premature stimulation by thyroid hormone. Dio3(-/-) mice displayed reduced foliation, accelerated disappearance of the external germinal layer, and premature expansion of the molecular layer at juvenile ages. Furthermore, Dio3(-/-) mice exhibited locomotor behavioral abnormalities and impaired ability in descending a vertical pole. To ascertain that these phenotypes resulted from inappropriate exposure to thyroid hormone, thyroid hormone receptor α1 (TRα1) was removed from Dio3(-/-) mice, which substantially corrected the cerebellar and behavioral phenotypes. Deletion of TRα1 did not correct the previously reported small thyroid gland or deafness in Dio3(-/-) mice, indicating that Dio3 controls the activation of specific receptor isoforms in different tissues. These findings suggest that type 3 deiodinase constrains the timing of thyroid hormone action during cerebellar development.


Assuntos
Cerebelo/enzimologia , Cerebelo/metabolismo , Iodeto Peroxidase/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Animais , Cerebelo/anormalidades , Feminino , Imuno-Histoquímica , Hibridização In Situ , Iodeto Peroxidase/genética , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Receptores alfa dos Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA