Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108387

RESUMO

Essential oils (EOs) are mixtures of volatile compounds belonging to several chemical classes derived from aromatic plants using different distillation techniques. Recent studies suggest that the consumption of Mediterranean plants, such as anise and laurel, contributes to improving the lipid and glycemic profile of patients with diabetes mellitus (DM). Hence, the aim of the present study was to investigate the potential anti-inflammatory effect of anise and laurel EOs (AEO and LEO) on endothelial cells isolated from the umbilical cord vein of females with gestational diabetes mellitus (GDM-HUVEC), which is a suitable in vitro model to reproduce the pro-inflammatory phenotype of a diabetic endothelium. For this purpose, the Gas Chromatographic/Mass Spectrometric (GC-MS) chemical profiles of AEO and LEO were first analyzed. Thus, GDM-HUVEC and related controls (C-HUVEC) were pre-treated for 24 h with AEO and LEO at 0.025% v/v, a concentration chosen among others (cell viability by MTT assay), and then stimulated with TNF-α (1 ng/mL). From the GC-MS analysis, trans-anethole (88.5%) and 1,8-cineole (53.9%) resulted as the major components of AEO and LEO, respectively. The results in C- and GDM-HUVEC showed that the treatment with both EOs significantly reduced: (i) the adhesion of the U937 monocyte to HUVEC; (ii) vascular adhesion molecule-1 (VCAM-1) protein and gene expression; (iii) Nuclear Factor-kappa B (NF-κB) p65 nuclear translocation. Taken together, these data suggest the anti-inflammatory efficacy of AEO and LEO in our in vitro model and lay the groundwork for further preclinical and clinical studies to study their potential use as supplements to mitigate vascular endothelial dysfunction associated with DM.


Assuntos
Diabetes Gestacional , Óleos Voláteis , Humanos , Gravidez , Feminino , Monócitos/metabolismo , Células Endoteliais/metabolismo , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Células U937 , Adesão Celular , NF-kappa B/metabolismo , Cordão Umbilical/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo
2.
Int J Mol Med ; 51(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37026516

RESUMO

Intervertebral disc (IVD) degeneration (IDD) is closely associated with inflammation, oxidative stress and loss of the discogenic phenotype, which current therapies are unable to reverse. In the present study, the effects of acetone extract from Violina pumpkin (Cucurbita moschata) leaves on degenerated IVD cells were investigated. IVD cells were isolated from the degenerated disc tissue of patients undergoing spinal surgery and were exposed to acetone extract and three major thin layer chromatography subfractions. The results revealed that, in particular, the cells benefited from exposure to subfraction Fr7, which consisted almost entirely of p­Coumaric acid. Western blot and immunocytochemical analysis showed that Fr7 induced a significant increase in discogenic transcription factors (SOX9 and tricho­rhino­phalangeal syndrome type I protein, zinc finger protein), extracellular matrix components (aggrecan, collagen type II), cellular homeostasis and stress response regulators, such as FOXO3a, nuclear factor erythroid 2­related factor 2, superoxide dismutase 2 and sirtuin 1. Two important markers related to the presence and activity of stem cells, migratory capacity and OCT4 expression, were assessed by scratch assay and western blotting, respectively, and were significantly increased in Fr7­treated cells. Moreover, Fr7 counteracted H2O2­triggered cell damage, preventing increases in the pro­inflammatory and anti­chondrogenic microRNA (miR), miR­221. These findings strengthen the hypothesis that adequate stimuli can support resident cells to repopulate the degenerated IVD and restart the anabolic machinery. Taken together, these data contribute to the discovery of molecules potentially effective in slowing the progression of IDD, a disease for which there is currently no effective treatment. Moreover, the use of part of a plant, the pumpkin leaves, which is usually considered a waste product in the Western world, indicated that it contains substances with potential beneficial effects on human health.


Assuntos
Cucurbita , Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Humanos , Cucurbita/genética , Degeneração do Disco Intervertebral/metabolismo , Acetona/metabolismo , Peróxido de Hidrogênio/metabolismo , Disco Intervertebral/metabolismo , MicroRNAs/genética
3.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831396

RESUMO

Extracellular vesicles (EVs) are a heterogenous population of plasma membrane-surrounded particles that are released in the extracellular milieu by almost all types of living cells. EVs are key players in intercellular crosstalk, both locally and systemically, given that they deliver their cargoes (consisting of proteins, lipids, mRNAs, miRNAs, and DNA fragments) to target cells, crossing biological barriers. Those mechanisms further trigger a wide range of biological responses. Interestingly, EV phenotypes and cargoes and, therefore, their functions, stem from their specific parental cells. For these reasons, EVs have been proposed as promising candidates for EV-based, cell-free therapies. One of the new frontiers of cell-based immunotherapy for the fight against refractory neoplastic diseases is represented by genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes, which in recent years have demonstrated their effectiveness by reaching commercialization and clinical application for some neoplastic diseases. CAR-T-derived EVs represent a recent promising development of CAR-T immunotherapy approaches. This crosscutting innovative strategy is designed to exploit the advantages of genetically engineered cell-based immunotherapy together with those of cell-free EVs, which in principle might be safer and more efficient in crossing biological and tumor-associated barriers. In this review, we underlined the potential of CAR-T-derived EVs as therapeutic agents in tumors.

4.
Nutrients ; 14(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956385

RESUMO

Bone physiology is regulated by osteoblast and osteoclast activities, both involved in the bone remodeling process, through deposition and resorption mechanisms, respectively. The imbalance between these two phenomena contributes to the onset of bone diseases. Among these, osteoporosis is the most common metabolic bone disorder. The therapies currently used for its treatment include antiresorptive and anabolic agents associated with side effects. Therefore, alternative therapeutic approaches, including natural molecules such as coumarin and their derivatives, have recently shown positive results. Thus, our proposal was to investigate the effect of the coumarin derivative umbelliferon (UF) using an interesting model of human osteoblasts (hOBs) isolated from osteoporotic patients. UF significantly improved the activity of osteoporotic-patient-derived hOBs via estrogen receptor 1 (ESR1) and the downstream activation of ß-catenin pathway. Additionally, hOBs were co-cultured in microgravity with human osteoclasts (hOCs) using a 3D system bioreactor, able to reproduce the bone remodeling unit in bone loss conditions in vitro. Notably, UF exerted its anabolic role by reducing the multinucleated cells. Overall, our study confirms the potential efficacy of UF in bone health, and identified, for the first time, a prospective alternative natural compound useful to prevent/treat bone loss diseases such as osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Receptor alfa de Estrogênio/metabolismo , Osteoporose , Doenças Ósseas Metabólicas/metabolismo , Reabsorção Óssea/tratamento farmacológico , Calcificação Fisiológica , Diferenciação Celular , Cumarínicos/uso terapêutico , Humanos , Osteoblastos , Osteoclastos , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Estudos Prospectivos , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Front Bioeng Biotechnol ; 10: 965006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992360

RESUMO

Perinatal derivatives (PnD) are birth-associated tissues, such as placenta, umbilical cord, amniotic and chorionic membrane, and thereof-derived cells as well as secretomes. PnD play an increasing therapeutic role with beneficial effects on the treatment of various diseases. The aim of this review is to elucidate the modes of action of non-hematopoietic PnD on inflammation, angiogenesis and wound healing. We describe the source and type of PnD with a special focus on their effects on inflammation and immune response, on vascular function as well as on cutaneous and oral wound healing, which is a complex process that comprises hemostasis, inflammation, proliferation (including epithelialization, angiogenesis), and remodeling. We further evaluate the different in vitro assays currently used for assessing selected functional and therapeutic PnD properties. This review is a joint effort from the COST SPRINT Action (CA17116) with the intention to promote PnD into the clinics. It is part of a quadrinomial series on functional assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer activities, anti-inflammation, wound healing, angiogenesis, and regeneration.

6.
Front Bioeng Biotechnol ; 10: 854845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35866032

RESUMO

One of the most relevant diabetes complications is impaired wound healing, mainly characterized by reduced peripheral blood flow and diminished neovascularization together with increased inflammation and oxidative stress. Unfortunately, effective therapies are currently lacking. Recently, the amniotic membrane (AM) has shown promising results in wound management. Here, the potential role of AM on endothelial cells isolated from the umbilical cord vein of gestational diabetes-affected women (GD-HUVECs), has been investigated. Indeed, GD-HUVECs in vivo exposed to chronic hyperglycemia during pregnancy compared to control cells (C-HUVECs) have shown molecular modifications of cellular homeostasis ultimately impacting oxidative and nitro-oxidative stress, inflammatory phenotype, nitric oxide (NO) synthesis, and bioavailability, thus representing a useful model for studying the mechanisms potentially supporting the role of AM in chronic non-healing wounds. In this study, the anti-inflammatory properties of AM have been assessed using a monocyte-endothelium interaction assay in cells pre-stimulated with tumor necrosis factor-α (TNF-α) and through vascular adhesion molecule expression and membrane exposure, together with the AM impact on the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway and NO bioavailability. Moreover, GD-HUVEC migration and tube formation ability were evaluated in the presence of AM. The results showed that AM significantly reduced TNF-α-stimulated monocyte-endothelium interaction and the membrane exposure of the endothelial vascular and intracellular adhesion molecules (VCAM-1 and ICAM-1, respectively) in both C- and GD-HUVECs. Strikingly, AM treatment significantly improved vessel formation in GD-HUVECs and cell migration in both C- and GD-HUVECs. These collective results suggest that AM positively affects various critical pathways in inflammation and angiogenesis, thus providing further validation for ongoing clinical trials in diabetic foot ulcers.

7.
Nutrients ; 15(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615729

RESUMO

Extracellular vesicles (EVs) are a class of circulating entities that are involved in intercellular crosstalk mechanisms, participating in homeostasis maintenance, and diseases. Celiac disease is a gluten-triggered immune-mediated disorder, characterized by the inflammatory insult of the enteric mucosa following local lymphocytic infiltration, resulting in villous atrophy. The goal of this research was the assessment and characterization of circulating EVs in celiac disease patients, as well as in patients already on an adequate gluten-free regimen (GFD). For this purpose, a novel and validated technique based on polychromatic flow cytometry that allowed the identification and enumeration of different EV sub-phenotypes was applied. The analysis evidenced that the total, annexin V+, leukocyte (CD45+), and platelet (CD41a+) EV counts were significantly higher in both newly diagnosed celiac disease patients and patients under GFD compared with the healthy controls. Endothelial-derived (CD31+) and epithelial-derived (EpCAM+) EV counts were significantly lower in subjects under gluten exclusion than in celiac disease patients, although EpCAM+ EVs maintained higher counts than healthy subjects. The numbers of EpCAM+ EVs were a statistically significant predictor of intraepithelial leukocytes (IEL). These data demonstrate that EVs could represent novel and potentially powerful disease-specific biomarkers in the context of celiac disease.


Assuntos
Doença Celíaca , Vesículas Extracelulares , Humanos , Doença Celíaca/diagnóstico , Molécula de Adesão da Célula Epitelial , Glutens , Intestino Delgado , Dieta Livre de Glúten
8.
FASEB J ; 35(6): e21662, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34046935

RESUMO

Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.


Assuntos
Antioxidantes/metabolismo , Senescência Celular , Diabetes Gestacional/fisiopatologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/patologia , Modelos Biológicos , Estresse Oxidativo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Gravidez , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166076, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422633

RESUMO

Childhood obesity is characterized by the loss of vascular insulin sensitivity along with altered oxidant-antioxidant state and chronic inflammation, which play a key role in the onset of endothelial dysfunction. We previously demonstrated a reduced insulin-stimulated Nitric Oxide (NO) bioavailability in Human Umbilical Vein Endothelial cells (HUVECs) cultured with plasma from obese pre-pubertal children (OB) compared to those cultured with plasma of normal-weight children (CTRL). However, mechanisms underlying endothelial dysfunction in childhood obesity remains poorly understood. Hence, the present study aimed to better investigate these mechanisms, also considering a potential involvement of mammalian Target Of Rapamycin Complex1 (mTORC1)-ribosomal protein S6 Kinase beta1 (S6K1) pathway. OB-children (N = 32, age: 9.2 ± 1.7; BMI z-score: 2.72 ± 0.31) had higher fasting insulin levels and increased HOMA-IR than CTRL-children (N = 32, age: 8.8 ± 1.2; BMI z-score: 0.33 ± 0.75). In vitro, HUVECs exposed to OB-plasma exhibited significant increase in Reactive Oxygen Species (ROS) levels, higher vascular and intercellular adhesion molecules exposure, together with increased monocytes-endothelial interaction. This was associated with unbalanced pro- and anti-atherogenic endothelial insulin stimulated signaling pathways, as measured by increased Mitogen Activated Protein Kinase (MAPK) and decreased Insulin Receptor Substrate-1 (IRS-1)/protein kinase B (Akt)/ endothelial NO Synthase (eNOS) phosphorylation levels, together with augmented S6K1 activation. Interestingly, inhibition of mTORC1-S6K1 pathway using rapamycin significantly restored the IRS-1/Akt/eNOS activation, suggesting a feedback regulation of IRS-1/Akt signal through S6K1. Overall, our in vitro data shed light on new mechanisms underlying the onset of endothelial dysfunction in childhood obesity.


Assuntos
Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Obesidade/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Adesão Celular , Células Cultivadas , Criança , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Monócitos/metabolismo , Monócitos/patologia , Obesidade/sangue , Obesidade/patologia , Plasma/metabolismo
10.
Oxid Med Cell Longev ; 2020: 6381380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133348

RESUMO

Nowadays, the dramatically increased prevalence of metabolic diseases, such as obesity and diabetes mellitus and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death worldwide. Dietary nutrients together with healthy lifestyles have a crucial role in the endothelium health-promoting effects. From a growing body of evidence, active natural compounds from food, including polyphenols and carotenoids, have attracted particular attention as a complementary therapy on atherosclerosis and cardiovascular disease, as well as preventive approaches through the attenuation of inflammation and oxidative stress. They mainly act as radical scavengers by promoting a variety of biological mechanisms, such as improvements in endothelial function, blood pressure, platelet activity, and insulin sensitivity, and by modulating various known biomarkers. The present review highlights the role of polyphenols and carotenoids in early endothelial dysfunction with attention to their beneficial effect in modulating both classical and recent technologically generated emerging biomarkers. These, alone or in combination, can play an important role in the prediction, diagnosis, and evolution of cardiovascular disease. However, a main challenge is to speed up early and prompt new interventions in order to prevent or slow down disease progression, even with an adequate intake of bioactive compounds. Hence, there is an urgent need of new more validated, appropriate, and reliable diagnostic and therapeutic biomarkers useful to diagnose endothelial dysfunction at an earlier stage.


Assuntos
Biomarcadores/metabolismo , Carotenoides/farmacologia , Endotélio Vascular/fisiopatologia , Polifenóis/farmacologia , Animais , Dieta , Endotélio Vascular/efeitos dos fármacos , Humanos , Modelos Biológicos
11.
Oxid Med Cell Longev ; 2019: 8184656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918580

RESUMO

Diabetes is associated with vascular inflammation, endothelial dysfunction, and oxidative stress, promoting the development of cardiovascular diseases (CVD). Several studies showed that a carotenoid-rich diet is associated to a reduced cardiovascular risk in healthy and diabetic subjects, although the mechanisms of action are still unknown. Here, the potential role of ß-carotene (BC) and lycopene (Lyc) in human endothelial cells isolated from human umbilical cord vein (HUVECs) of women with gestational diabetes (GD) and respective controls (C) has been investigated. Results showed that BC and Lyc reduced the tumor necrosis factor alpha- (TNF-α-) stimulated monocyte-endothelium interaction (adhesion assay), membrane exposure (flow cytometry), and total expression levels (Western blot) of VCAM-1 and ICAM-1 in both cell types. Moreover, the treatment with BC and Lyc reduced the TNF-α-induced nuclear translocation of NF-κB (image flow cytometry) by preserving bioavailability of nitric oxide (NO, flow cytometry, and cGMP EIA kit assay), a key vasoactive molecule. Notably, BC and Lyc pretreatment significantly reduced peroxynitrite levels (flow cytometry), contributing to the redox balance protection. These results suggest a new mechanism of action of carotenoids which exert vascular protective action in diabetic condition, thus reinforcing the importance of a carotenoid-rich diet in the prevention of diabetes cardiovascular complications.


Assuntos
Anti-Inflamatórios/farmacologia , Carotenoides/farmacologia , Diabetes Gestacional/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Adulto , Disponibilidade Biológica , Comunicação Celular/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Gravidez , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
Oxid Med Cell Longev ; 2018: 2087373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849868

RESUMO

Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor-α-stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.


Assuntos
Anti-Inflamatórios/uso terapêutico , Diabetes Gestacional/tratamento farmacológico , Células Endoteliais/patologia , Hiperglicemia/complicações , Metilistidinas/uso terapêutico , Adulto , Animais , Anti-Inflamatórios/farmacologia , Diabetes Gestacional/patologia , Feminino , Peixes , Humanos , Metilistidinas/farmacologia , Gravidez
13.
J Cell Physiol ; 233(11): 8996-9006, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29904927

RESUMO

Mesenchymal stromal cells (MSCs) are considered to be an excellent source in regenerative medicine. They contain several cell subtypes, including multipotent stem cells. MSCs are of particular interest as they are currently being tested using cell and gene therapies for a number of human diseases. They represent a rare population in tissues; for this reason, they require, before being transplanted, an in vitro amplification. This process may induce replicative senescence, thus affecting differentiation and proliferative capacities. Increasing evidence suggests that MSCs from fetal tissues are significantly more plastic and grow faster than MSCs from bone marrow. Here, we compare amniotic fluid mesenchymal stromal cells (AF-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs) in terms of cell proliferation, surface markers, multidifferentiation potential, senescence, and DNA repair capacity. Our study shows that AF-MSCs are less prone to senescence with respect to BM-MSCs. Moreover, both cell models activate the same repair system after DNA damage, but AF-MSCs are able to return to the basal condition more efficiently with respect to BM-MSCs. Indeed, AF-MSCs are better able to cope with genotoxic stress that may occur either during in vitro cultivation or following transplantation in patients. Our findings suggest that AF-MSCs may represent a valid alternative to BM-MSCs in regenerative medicine, and, of great relevance, the investigation of the mechanisms involved in DNA repair capacity of both AF-MSCs and BM-MSCs may pave the way to their rational use in the medical field.


Assuntos
Líquido Amniótico/metabolismo , Proliferação de Células/genética , Senescência Celular/genética , Células-Tronco Mesenquimais/citologia , Líquido Amniótico/citologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo
14.
Eur J Med Chem ; 152: 53-64, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29689474

RESUMO

In mammalian cells, aberrant iNOS induction may have detrimental consequences, and seems to be involved in the proliferation and progression of different tumors, such as malignant gliomas. Therefore, selective inhibition of iNOS could represent a feasible therapeutic strategy to treat these conditions. In this context, we have previously disclosed new acetamidines able to inhibit iNOS with a very high selectivity profile over eNOS or nNOS. Here we report the synthesis of a new series of compounds structurally related to the leading scaffold of N-[(3-aminomethyl)benzyl] acetamidine (1400 W), together with their in vitro activity and selectivity. Compound 39 emerged as the most promising molecule of this series, and it was ex vivo evaluated on isolated and perfused resistance arteries, confirming a high selectivity toward iNOS inhibition. Moreover, C6 rat glioma cell lines biological response to 39 was investigated, and preliminary MTT assay showed a significant decrease in cell metabolic activity of C6 rat glioma cells. Finally, results of a docking study shed light on the binding mode of 39 into NOS catalytic site.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Glioma/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Prolina/análogos & derivados , Amidinas , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glioma/metabolismo , Glioma/patologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Prolina/síntese química , Prolina/química , Prolina/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
15.
J Tissue Eng Regen Med ; 12(2): 447-459, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28508565

RESUMO

Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems. Furthermore, to mimic the 'bone remodelling unit' in vitro, hAFMSCs were co-cultured in the 3D system with human monocyte cells (hMCs) as osteoclast precursors. The results showed that in a conventional 2D culture system, hAFMSCs were responsive to the MK-4, which significantly improved the osteogenic process through γ-glutamyl carboxylase-dependent pathway. The same results were obtained in the 3D dynamic system where MK-4 treatment supported the osteoblast-like formation promoting the extracellular bone matrix deposition and the expression of the osteogenic-related proteins (alkaline phosphatase, osteopontin, collagen type-1 and osteocalcin). Notably, when the hAFMSCs were co-cultured in a 3D dynamic system with the hMCs, the presence of MK-4 supported the cellular aggregate formation as well as the osteogenic function of hAFMSCs, but negatively affected the osteoclastogenic process. Taken together, our results demonstrate that MK-4 supported the aggregate formation of hAFMSCs and increased the osteogenic functions. Specifically, our data could help to optimize bone regenerative medicine combining cell-based approaches with MK-4 treatment.


Assuntos
Líquido Amniótico/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Vitamina K 2/análogos & derivados , Carbono-Carbono Ligases/metabolismo , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Gravidez , Vitamina K 2/farmacologia
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3243-3253, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847515

RESUMO

Although cystic fibrosis (CF) patients exhibit signs of endothelial perturbation, the functions of the cystic fibrosis conductance regulator (CFTR) in vascular endothelial cells (EC) are poorly defined. We sought to uncover biological activities of endothelial CFTR, relevant for vascular homeostasis and inflammation. We examined cells from human umbilical cords (HUVEC) and pulmonary artery isolated from non-cystic fibrosis (PAEC) and CF human lungs (CF-PAEC), under static conditions or physiological shear. CFTR activity, clearly detected in HUVEC and PAEC, was markedly reduced in CF-PAEC. CFTR blockade increased endothelial permeability to macromolecules and reduced trans­endothelial electrical resistance (TEER). Consistent with this, CF-PAEC displayed lower TEER compared to PAEC. Under shear, CFTR blockade reduced VE-cadherin and p120 catenin membrane expression and triggered the formation of paxillin- and vinculin-enriched membrane blebs that evolved in shrinking of the cell body and disruption of cell-cell contacts. These changes were accompanied by enhanced release of microvesicles, which displayed reduced capability to stimulate proliferation in recipient EC. CFTR blockade also suppressed insulin-induced NO generation by EC, likely by inhibiting eNOS and AKT phosphorylation, whereas it enhanced IL-8 release. Remarkably, phosphodiesterase inhibitors in combination with a ß2 adrenergic receptor agonist corrected functional and morphological changes triggered by CFTR dysfunction in EC. Our results uncover regulatory functions of CFTR in EC, suggesting a physiological role of CFTR in the maintenance EC homeostasis and its involvement in pathogenetic aspects of CF. Moreover, our findings open avenues for novel pharmacology to control endothelial dysfunction and its consequences in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/patologia , Células Endoteliais/patologia , Antígenos CD/metabolismo , Caderinas/metabolismo , Proliferação de Células/fisiologia , AMP Cíclico/metabolismo , Fibrose Cística/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Homeostase/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Insulina/farmacologia , Interleucina-8/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxidos de Nitrogênio/metabolismo , Fosforilação , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , beta-Arrestina 2/metabolismo
17.
Lab Invest ; 97(11): 1375-1384, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28759010

RESUMO

Endothelial cell (EC) dysfunction has been reported in cystic fibrosis (CF) patients. Thus, the availability of CF EC is paramount to uncover mechanisms of endothelial dysfunction in CF. Using collagenase digestion, we isolated cells from small fragments of pulmonary artery dissected from non-CF lobes or explanted CF lungs. These cells were a heterogeneous mixture, containing variable percentages of EC. To obtain virtually pure pulmonary artery endothelial cells (PAEC), we developed an easy, inexpensive, and reliable method, based on the differential adhesion time of pulmonary artery cells collected after collagenase digestion. With this method, we obtained up to 95% pure non-CF and CF-PAEC. Moreover, we also succeed at immortalizing both PAEC and CF-PAEC, which remained viable and with unchanged phenotype and proliferation rate over the 30th passage. These cells recapitulated cystic fibrosis transmembrane conductance regulator expression and functions of the parental cells. Thus, we isolated for the first time endothelial cells from CF patients, providing a valuable tool to define the emerging role of EC in CF lung and vascular disease.


Assuntos
Fibrose Cística/patologia , Endotélio Vascular/patologia , Pulmão/patologia , Artéria Pulmonar/patologia , Substituição de Aminoácidos , Biomarcadores/metabolismo , Adesão Celular , Linhagem Celular Transformada , Proliferação de Células , Separação Celular , Sobrevivência Celular , Células Cultivadas , Colagenases/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/cirurgia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Impedância Elétrica , Endotélio Vascular/metabolismo , Humanos , Imunofenotipagem , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/cirurgia , Mutação , Pneumonectomia , Artéria Pulmonar/metabolismo , Técnicas de Cultura de Tecidos
18.
Diabetes Metab Res Rev ; 33(8)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28753251

RESUMO

BACKGROUND: To evaluate whether exposure to GLP-1 receptor agonist Liraglutide could modulate pro-atherogenic alterations previously observed in endothelial cells obtained by women affected by gestational diabetes (GD), thus exposed in vivo to hyperglycemia, oxidative stress, and inflammation and to evaluate endothelial microvesicle (EMV) release, a new reliable biomarker of vascular stress/damage. METHODS: We studied Liraglutide effects and its plausible molecular mechanisms on monocyte cell adhesion and adhesion molecule expression and membrane exposure in control (C-) human umbilical vein endothelial cells (HUVEC) as well as in HUVEC of women affected by GD exposed in vitro to TNF-α. In the same model, we also investigated Liraglutide effects on EMV release. RESULTS: In response to TNF-α, endothelial monocyte adhesion and VCAM-1 and ICAM-1 expression and exposure on plasma membrane was greater in GD-HUVEC than C-HUVEC. This was the case also for EMV release. In GD-HUVEC, Liraglutide exposure significantly reduced TNF-α induced endothelial monocyte adhesion as well as VCAM-1 and ICAM-1 expression and exposure on plasma membrane. In the same cells, Liraglutide exposure also reduced MAPK/NF-kB activation, peroxynitrite levels, and EMV release. CONCLUSIONS: TNF-α induced pro-atherogenic alterations are amplified in endothelial cells chronically exposed to hyperglycemia in vivo. Liraglutide mitigates TNF-α effects and reduces cell stress/damage indicators, such as endothelial microvesicle (EMV) release. These results foster the notion that Liraglutide could exert a protective effect against hyperglycemia and inflammation triggered endothelial dysfunction.


Assuntos
Aterosclerose/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Aterosclerose/metabolismo , Feminino , Humanos , Hipoglicemiantes/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Liraglutida/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
19.
FASEB J ; 31(5): 1856-1866, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28100645

RESUMO

The proresolution lipid mediator lipoxin (LX)A4 bestows protective bioactions on endothelial cells. We examined the impact of LXA4 on transcellular endothelial signaling via microRNA (miR)-containing microvesicles. We report LXA4 inhibition of MV release by TNF-α-treated HUVECs, associated with the down-regulation of 18 miR in endothelial microvesicles (EMVs) and the up-regulation of miR-126-5p, both in HUVECs and in EMVs. LXA4 up-regulated miR-126-5p by ∼5-fold in HUVECs and promoted a release of microvesicles (LXA4-EMVs) that enhanced miR-126-5p by ∼7-fold in recipient HUVECs. In these cells, LXA4-EMVs abrogated the up-regulation of VCAM-1, induced in recipient HUVECs by EMVs released by untreated or TNF-α-treated HUVECs. LXA4-EMVs also reduced by ∼40% the expression of SPRED1, which we validated as an miR-126-5p target, whereas they stimulated monolayer repair in an in vitro wound assay. This effect was lost when the EMVs were depleted of miR-126-5p. These results provide evidence that changes in miR expression and microvesicle packaging and transfer represent a mechanism of action of LXA4, which may be relevant in vascular biology and inflammation.-Codagnone, M., Recchiuti, A., Lanuti, P., Pierdomenico, A. M., Cianci, E., Patruno, S., Mari, V. C., Simiele, F., Di Tomo, P., Pandolfi, A., Romano, M. Lipoxin A4 stimulates endothelial miR-126-5p expression and its transfer via microvesicles.


Assuntos
Micropartículas Derivadas de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Lipoxinas/farmacologia , MicroRNAs/genética , Linhagem Celular , Micropartículas Derivadas de Células/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
Mol Cell Endocrinol ; 443: 52-62, 2017 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-28062198

RESUMO

Childhood obesity is commonly associated with early signs of endothelial dysfunction, characterized by impairment of insulin signaling and vascular Nitric Oxide (NO) availability. However, the underlying mechanisms remain to be established. Hence, we tested the hypothesis that endothelial insulin-stimulated NO production and availability was impaired and related to Endoplasmic Reticulum (ER) in human umbilical vein endothelial cells (HUVECs) cultured with plasma obtained from pre-pubertal obese (OB) children. OB children (N = 28, age: 8.8 ± 2.2; BMI z-score: 2.15 ± 0.39) showed impaired fasting glucose, insulin and HOMA-IR than normal weight children (CTRL; N = 28, age: 8.8 ± 1.7; BMI z-score: 0.17 ± 0.96). The in vitro experiments showed that OB-plasma significantly impaired endothelial insulin-stimulated NO production and bioavailability compared to CTRL-plasma. In parallel, in HUVECs OB-plasma increased GRP78 and activated PERK, eIF2α, IkBα and ATF6 (all ER stress markers). Moreover, OB-plasma increased NF-κB activation and its nuclear translocation. Notably, all these effects proved to be significantly restored by using PBA and TUDCA, known ER stress inhibitors. Our study demonstrate for the first time that plasma from obese children is able to induce in vitro endothelial insulin resistance, which is characterized by reduced insulin-stimulated NO production and bioavailability, endothelial ER stress and increased NF-κB activation.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Insulina/farmacologia , Óxido Nítrico/metabolismo , Obesidade/sangue , Puberdade/sangue , Fator 6 Ativador da Transcrição/metabolismo , Disponibilidade Biológica , Biomarcadores/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Criança , GMP Cíclico/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA