Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 8(17): 2017-2031, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27739328

RESUMO

AIM: Histone deacetylases (HDACs) regulate the life cycle of several viruses. We investigated the ability of different HDAC inhibitors, to interfere with influenza virus A/Puerto Rico/8/34/H1N1 (PR8 virus) replication in Madin-Darby canine kidney and NCI cells. RESULTS: 3-(5-(3-Fluorophenyl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-pyrrol-2-yl)-N-hydroxyacrylamide (MC1568) inhibited HDAC6/8 activity and PR8 virus replication, with decreased expression of viral proteins and their mRNAs. Such an effect may be related to a decrease in intranuclear content of viral polymerases and, in turn, to an early acetylation of Hsp90, a major player in their nuclear import. Later, the virus itself induced Hsp90 acetylation, suggesting a differential and time-dependent role of acetylated proteins in virus replication. CONCLUSION: The inhibition of HDAC6/8 activity during early steps of PR8 virus replication could lead to novel anti-influenza strategy.

2.
PLoS One ; 10(5): e0127086, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25985305

RESUMO

Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions.


Assuntos
Glutationa/metabolismo , Inflamação/metabolismo , Influenza Humana/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Proteômica , Animais , Antioxidantes/farmacologia , Western Blotting , Linhagem Celular , Dexametasona/farmacologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Inflamação/complicações , Inflamação/patologia , Influenza Humana/complicações , Influenza Humana/patologia , Lipopolissacarídeos/farmacologia , Camundongos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Profilinas/metabolismo , Células RAW 264.7 , Compostos de Sulfidrila/farmacologia , Tiorredoxinas/metabolismo , Vimentina/metabolismo
3.
PLoS One ; 10(2): e0117005, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706391

RESUMO

Modifications of intestinal glycoreceptors expression, in particular CEACAM6, typically found in ileal Crohn's disease (CD), favor, among the commensal species of microbiota, the enrichment in Escherichia coli. Removal of protein glycosidic residues by neuraminidase, a sialidase typical of influenza virus, increases adhesion ability of Escherichia coli to Caco-2 intestinal cells. In this study we investigated whether influenza virus infection of human intestinal epithelial cells could influence the adhesiveness of different Escherichia coli strains isolated from CD patients by altering surface glycoreceptors. Influenza virus infection of intestinal cells increased exposure of galactose and mannose residues on the cell surface. In particular, glycoreceptors Thomsen-Friedenreich and CEACAM6 were over-expressed in influenza virus infected cells. In the same experimental conditions, a significant increase in bacterial adhesiveness was observed, independently of their own adhesive ability. The increase was reverted by treatment with anti-TF and anti-CEACAM6 antibodies. Interestingly, influenza virus was able to efficiently replicate in human primary intestinal cells leading to TF exposure. Finally, intestinal infected cells produced high levels of pro-inflammatory cytokines compared to control. Overall these data suggest that influenza virus infection, could constitute an additional risk factor in CD patients.


Assuntos
Aderência Bacteriana , Doença de Crohn/microbiologia , Escherichia coli/fisiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Mucosa Intestinal/virologia , Anticorpos/imunologia , Antígenos CD/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Células CACO-2 , Moléculas de Adesão Celular/imunologia , Proteínas Ligadas por GPI/imunologia , Galactose/metabolismo , Humanos , Mucosa Intestinal/microbiologia , Manose/metabolismo
4.
Eur J Med Chem ; 83: 665-73, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25010937

RESUMO

A new series of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives was synthesized. The antifungal activity was evaluated in vitro against different fungal species. The biological results show that the most active compounds possess an antifungal activity comparable or higher than Fluconazole against Candida albicans, non-albicans Candida species, Cryptococcus neoformans and dermathophytes. Because of their racemic nature, the most active compounds 5f and 6c were tested as pure enantiomers. For 6c the (R)-enantiomer resulted more active than the (S)-one, otherwise for 5f the (S)-enantiomer resulted the most active. To rationalize the experimental data, a ligand-based computational study was carried out; the results of the modelling study show that (S)-5f and (R)-6c perfectly align to the ligand-based model, showing the same relative configuration. Preliminary studies on the human lung adenocarcinoma epithelial cells (A549) have shown that 6c, 5e and 5f possess a low cytotoxicity.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Imidazóis/síntese química , Imidazóis/farmacologia , Antifúngicos/química , Antifúngicos/toxicidade , Candida albicans/enzimologia , Linhagem Celular , Técnicas de Química Sintética , Humanos , Imidazóis/química , Imidazóis/toxicidade , Modelos Moleculares , Conformação Proteica , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 24(6): 1502-5, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24582984

RESUMO

The aim of this study was to evaluate the caffeic acid (1) and ester derivatives (2-10) against Candida albicans biofilm and to investigate whether these compounds are able to inhibit the biofilm formation or destroy pre-formed biofilm. Caffeic acid ester 7, cinnamic acid ester 8 and 3,4-dihydroxybenzoic acid ester 10 are more active than fluconazole, used as reference drug, both on biofilm in formation with MIC50 values of 32, 32 and 16µg/mL, respectively, and in the early stage of biofilm formation (4h) with MIC50 values of 64, 32 and 64µg/mL, respectively. These esters result also more active than fluconazole on mature biofilm (24h), especially 8 and 10 with MIC50 values of 64µg/mL.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Candida albicans/fisiologia , Antifúngicos/síntese química , Ácidos Cafeicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
6.
Phytomedicine ; 21(6): 857-65, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24629600

RESUMO

Several essential oils exert in vitro activity against bacteria and viruses and, among these latter, herpes simplex virus type 1 (HSV-1) is known to develop resistance to commonly used antiviral agents. Thus, the effects of the essential oil derived from Mentha suaveolens (EOMS) and its active principle piperitenone oxide (PEO) were tested in in vitro experimental model of infection with HSV-1. The 50% inhibitory concentration (IC50) was determined at 5.1µg/ml and 1.4µg/ml for EOMS and PEO, respectively. Australian tea tree oil (TTO) was used as control, revealing an IC50 of 13.2µg/ml. Moreover, a synergistic action against HSV-1 was observed when each oil was added in combination with acyclovir. In order to find out the mechanism of action, EOMS, PEO and TTO were added to the cells at different times during the virus life-cycle. Results obtained by yield reduction assay indicated that the antiviral activity of both compounds was principally due to an effect after viral adsorption. Indeed, no reduction of virus yield was observed when cells were treated during viral adsorption or pre-treated before viral infection. In particular, PEO exerted a strong inhibitory effect by interfering with a late step of HSV-1 life-cycle. HSV-1 infection is known to induce a pro-oxidative state with depletion of the main intracellular antioxidant glutathione and this redox change in the cell is important for viral replication. Interestingly, the treatment with PEO corrected this deficit, thus suggesting that the compound could interfere with some redox-sensitive cellular pathways exploited for viral replication. Overall our data suggest that both EOMS and PEO could be considered good candidates for novel anti-HSV-1 strategies, and need further exploration to better characterize the targets underlying their inhibition.


Assuntos
Antivirais/farmacologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Mentha/química , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Infecções por Herpesviridae/tratamento farmacológico , Herpesvirus Humano 1/fisiologia , Técnicas In Vitro , Concentração Inibidora 50 , Masculino , Óleos Voláteis/química , Fitoterapia , Extratos Vegetais/farmacologia , Óleo de Melaleuca/farmacologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA