Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1346686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333210

RESUMO

The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target.


Assuntos
Neoplasias Ovarianas , Oximas , Triptofano , Feminino , Humanos , Animais , Camundongos , Triptofano/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Cinurenina/metabolismo , Sulfonamidas , Inibidores Enzimáticos/farmacologia , Carcinogênese , Microambiente Tumoral
2.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003426

RESUMO

Indoleamine 2,3-dioxygenase 2 (IDO2) is a paralog of Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan-degrading enzyme producing immunomodulatory molecules. However, the two proteins are unlikely to carry out the same functions. IDO2 shows little or no tryptophan catabolic activity and exerts contrasting immunomodulatory roles in a context-dependent manner in cancer and autoimmune diseases. The recently described potential non-enzymatic activity of IDO2 has suggested its possible involvement in alternative pathways, resulting in either pro- or anti-inflammatory effects in different models. In a previous study on non-small cell lung cancer (NSCLC) tissues, we found that IDO2 expression revealed at the plasma membrane level of tumor cells was significantly associated with poor prognosis. In this study, the A549 human cell line, basally expressing IDO2, was used as an in vitro model of human lung adenocarcinoma to gain more insights into a possible alternative function of IDO2 different from the catalytic one. In these cells, immunocytochemistry and isopycnic sucrose gradient analyses confirmed the IDO2 protein localization in the cell membrane compartment, and the immunoprecipitation of tyrosine-phosphorylated proteins revealed that kinase activities can target IDO2. The different localization from the cytosolic one and the phosphorylation state are the first indications for the signaling function of IDO2, suggesting that the IDO2 non-enzymatic role in cancer cells is worthy of deeper understanding.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Fosforilação , Triptofano/metabolismo
3.
Front Immunol ; 14: 1134551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122718

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan metabolizing enzyme chronically activated in many cancer patients and its expression and activity correlate with a poor prognosis. In fact, it acts as an immune regulator and contributes to tumor-induced immunosuppression by determining tryptophan deprivation and producing immunosuppressive metabolites named kynurenines. These findings made IDO1 an attractive target for cancer immunotherapy and small-molecule inhibitors, such as epacadostat, have been developed to block its enzymatic activity. Although epacadostat was effective in preclinical models and in early phase trials, it gave negative results in a metastatic melanoma randomized phase III study to test the benefit of adding epacadostat to the reference pembrolizumab therapy. However, the reason for the epacadostat failure in this clinical trial has never been understood. Our data suggest that a possible explanation of epacadostat ineffectiveness may rely on the ability of this drug to enhance the other IDO1 immunoregulatory mechanism, involving intracellular signaling function. These findings open up a new perspective for IDO1 inhibitors developed as new anticancer drugs, which should be carefully evaluated for their ability to block not only the catalytic but also the signaling activity of IDO1.


Assuntos
Melanoma , Triptofano , Humanos , Triptofano/metabolismo , Cinurenina/metabolismo , Oximas/farmacologia
4.
Nutrients ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893905

RESUMO

The imbalance in osteoblast (OB)-dependent bone formation in favor of osteoclast (OC)-dependent bone resorption is the main cause of loss of tissue mineral mass during bone remodeling leading to osteoporosis conditions. Thus, the suppression of OC activity together with the improvement in the OB activity has been proposed as an effective therapy for maintaining bone mass during aging. We tested the new dietary product, KYMASIN UP containing standardized Withania somnifera, Silybum marianum and Trigonella foenum-graecum herbal extracts or the single extracts in in vitro models mimicking osteoclastogenesis (i.e., RAW 264.7 cells treated with RANKL, receptor activator of nuclear factor kappa-Β ligand) and OB differentiation (i.e., C2C12 myoblasts treated with BMP2, bone morphogenetic protein 2). We found that the dietary product reduces RANKL-dependent TRAP (tartrate-resistant acid phosphatase)-positive cells (i.e., OCs) formation and TRAP activity, and down-regulates osteoclastogenic markers by reducing Src (non-receptor tyrosine kinase) and p38 MAPK (mitogen-activated protein kinase) activation. Withania somnifera appears as the main extract responsible for the anti-osteoclastogenic effect of the product. Moreover, KYMASIN UP maintains a physiological release of the soluble decoy receptor for RANKL, OPG (osteoprotegerin), in osteoporotic conditions and increases calcium mineralization in C2C12-derived OBs. Interestingly, KYMASIN UP induces differentiation in human primary OB-like cells derived from osteoporotic subjects. Based on our results, KYMASIN UP or Withania somnifera-based dietary supplements might be suggested to reverse the age-related functional decline of bone tissue by re-balancing the activity of OBs and OCs, thus improving the quality of life in the elderly and reducing social and health-care costs.


Assuntos
Produtos Biológicos , Reabsorção Óssea , Suplementos Nutricionais , Osteogênese , Animais , Produtos Biológicos/farmacologia , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoclastos , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
ChemMedChem ; 16(22): 3439-3450, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34355531

RESUMO

Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) are considered a promising strategy in cancer immunotherapy as they are able to boost the immune response and to work in synergy with other immunotherapeutic agents. Despite the fact that no IDO1 inhibitor has been approved so far, recent studies have shed light on the additional roles that IDO1 mediates beyond its catalytic activity, conferring new life to the field. Here we present a novel class of compounds originated from a structure-based virtual screening made on IDO1 active site. The starting hit compound is a novel chemotype based on a [1,2,4]triazolo[4,3-a]pyridine scaffold, so far underexploited among the heme binding moieties. Thanks to the rational and in silico-guided design of analogues, an improvement of the potency to sub-micromolar levels has been achieved, with excellent in vitro metabolic stability and exquisite selectivity with respect to other heme-containing enzymes.


Assuntos
Antineoplásicos , Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065885

RESUMO

Genetic engineering of plants has turned out to be an attractive approach to produce various secondary metabolites. Here, we attempted to produce kynurenine, a health-promoting metabolite, in plants of Nicotiana tabacum (tobacco) transformed by Agrobacterium tumefaciens with the gene, coding for human indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme responsible for the kynurenine production because of tryptophan degradation. The presence of IDO1 gene in transgenic plants was confirmed by PCR, but the protein failed to be detected. To confer higher stability to the heterologous human IDO1 protein and to provide a more sensitive method to detect the protein of interest, we cloned a gene construct coding for IDO1-GFP. Analysis of transiently transfected tobacco protoplasts demonstrated that the IDO1-GFP gene led to the expression of a detectable protein and to the production of kynurenine in the protoplast medium. Interestingly, the intracellular localisation of human IDO1 in plant cells is similar to that found in mammal cells, mainly in cytosol, but in early endosomes as well. To the best of our knowledge, this is the first report on the expression of human IDO1 enzyme capable of secreting kynurenines in plant cells.


Assuntos
Agrobacterium tumefaciens/fisiologia , Proteínas de Fluorescência Verde/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Nicotiana/microbiologia , Agrobacterium tumefaciens/genética , Clonagem Molecular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Plasmídeos/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transformação Bacteriana
7.
Front Immunol ; 10: 1973, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481962

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first step in the kynurenine pathway of tryptophan (Trp) degradation that produces several biologically active Trp metabolites. L-kynurenine (Kyn), the first byproduct by IDO1, promotes immunoregulatory effects via activation of the Aryl hydrocarbon Receptor (AhR) in dendritic cells (DCs) and T lymphocytes. We here identified the nuclear coactivator 7 (NCOA7) as a molecular target of 3-hydroxyanthranilic acid (3-HAA), a Trp metabolite produced downstream of Kyn along the kynurenine pathway. In cells overexpressing NCOA7 and AhR, the presence of 3-HAA increased the association of the two molecules and enhanced Kyn-driven, AhR-dependent gene transcription. Physiologically, conventional (cDCs) but not plasmacytoid DCs or other immune cells expressed high levels of NCOA7. In cocultures of CD4+ T cells with cDCs, the co-addition of Kyn and 3-HAA significantly increased the induction of Foxp3+ regulatory T cells and the production of immunosuppressive transforming growth factor ß in an NCOA7-dependent fashion. Thus, the co-presence of NCOA7 and the Trp metabolite 3-HAA can selectively enhance the activation of ubiquitary AhR in cDCs and consequent immunoregulatory effects. Because NCOA7 is often overexpressed and/or mutated in tumor microenvironments, our current data may provide evidence for a new immune check-point mechanism based on Trp metabolism and AhR.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Células Dendríticas/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células Dendríticas/imunologia , Feminino , Humanos , Cinurenina/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Coativadores de Receptor Nuclear/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Linfócitos T Reguladores/imunologia
8.
J Cell Mol Med ; 23(5): 3757-3761, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30793469

RESUMO

The cytokine interleukin IL-35 is known to exert strong immunosuppressive functions. Indoleamine 2,3-dioxygenase 1 (IDO1) and Arginase 1 (Arg1) are metabolic enzymes that, expressed by dendritic cells (DCs), contribute to immunoregulation. Here, we explored any possible link between IL-35 and the activity of those enzymes. We transfected a single chain IL-35Ig gene construct in murine splenic DCs (DC35 ) and assessed any IDO1 and Arg1 activities as resulting from ectopic IL-35Ig expression, both in vitro and in vivo. Unlike Ido1, Arg1 expression was induced in vitro in DC35 , and it conferred an immunosuppressive phenotype on those cells, as revealed by a delayed-type hypersensitivity assay. Moreover, the in vivo onset of a tolerogenic phenotype in DC35 was associated with the detection of CD25+ CD39+ , rather than Foxp3+ , regulatory T cells. Therefore, Arg1, but not Ido1, expression in DC35 appears to be an early event in IL-35Ig-mediated immunosuppression.


Assuntos
Arginase/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Interleucinas/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Apirase/imunologia , Apirase/metabolismo , Arginase/genética , Arginase/metabolismo , Células Dendríticas/metabolismo , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA