Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Surg ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023753

RESUMO

BACKGROUND: The Ozaki technique demonstrated promising results in adults, but few studies reported on pediatric patients with limited follow-up time. This study aimed to evaluate the mid-term results of Ozaki technique compared with Ross operation for complex aortic valve (AV) diseases in children. MATERIALS AND METHODS: One hundred and seventeen children underwent either Ozaki (n = 64) or Ross (n = 53) operation from January 2017 to December 2023. The primary endpoint was incidence of moderate or severe regurgitation/stenosis (AR/AS) post procedure. RESULTS: No significant difference was observed in age (6.5±3.4 vs. 7.9±4.3 years) and weight (25.9±15.5 vs. 31.0±25.9 kgs) at surgery. The Ozaki group had significantly more patients in heart failure (20.3% vs. 1.9%, P = 0.003) before surgery and more patients needed ECMO installation (6.3% vs. 0, P = 0.125) after surgery. The Ozaki group were in worse status with more patients occurred heart failure (20.3% vs. 1.9%, P = 0.003) before surgery and needed ECMO installation (6.3% vs. 0, P = 0.125) after surgery. During follow up (20.4±17.3 vs. 22.7±22.8 months, P = 0.526), five patients (7.8%) in Ozaki group but no patients in Ross group required reoperations. The incidence of moderate or severe AR (28.1% vs. 3.1%) and AS (31.3% vs. 5.7%) were significantly higher than Ross group. Multivariate analysis identified lower age [HR:1.282 (95%CI:1.075-1.529), P = 0.006] and ECMO installation [HR:0.126 (0.018-0.887), P = 0.037] to be risk factors for moderate or severe AR, and higher aortic transvalvular gradient before discharge was confirmed as the only risk factor for moderate or severe AS (≥36 mmHg) at follow up in Ozaki group. CONCLUSION: Ozaki technique may be used as a palliative procedure for complex AV diseases in children, but its' mid-term results were not durable as Ross surgery, especially younger patients.

2.
Recent Pat Anticancer Drug Discov ; 19(4): 503-515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044710

RESUMO

BACKGROUND: Both apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) inhibition and melatonin suppress prostate cancer (PCa) growth. OBJECTIVE: This study evaluated the therapeutic efficiency of self-assembled and prostate-specific membrane antigen (PSMA)-targeted nanocarrier loading 125I radioactive particles and encapsulating siRNA targeting APE1 (siAPE1) and melatonin for PCa. METHODS: The linear polyarginine R12 polypeptide was prepared using Fmoc-Arg-Pbf-OH. The PSMA-targeted polymer was synthesized by conjugating azide-modified R12 peptide to PSMA monoclonal antibody (mAb). Before experiments, the PSMA-R12 nanocarrier was installed with melatonin and siAPE1, which were subsequently labeled by 125I radioactive particles. In vitro biocompatibility and cytotoxicity of nanocomposites were examined in LNCaP cells and in vivo biodistribution and pharmacokinetics were determined using PCa tumor-bearing mice. RESULTS: PSMA-R12 nanocarrier was ~120 nm in size and was increased to ~150 nm by melatonin encapsulation. PSMA-R12 nanoparticles had efficient loading capacities of siAPE1, melatonin, and 125I particles. The co-delivery of melatonin and siAPE1 by PSMA-R12-125I showed synergistic effects on suppressing LNCaP cell proliferation and Bcl-2 expression and promoting cell apoptosis and caspase-3 expression. Pharmacokinetics analysis showed that Mel@PSMA-R12-125I particles had high uptake activity in the liver, spleen, kidney, intestine, and tumor, and were accumulated in the tumor sites within the first 8 h p.i., but was rapidly cleared from all the tested organs at 24 h p.i. Administration of nanoparticles to PCa tumors in vivo showed that Mel@PSMA-R12- 125I/siAPE1 had high efficiency in suppressing PCa tumor growth. CONCLUSION: The PSMA-targeted nanocarrier encapsulating siAPE1 and melatonin is a promising therapeutic strategy for PCa and can provide a theoretical basis for patent applications.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Radioisótopos do Iodo , Melatonina , Nanopartículas , Neoplasias da Próstata , Masculino , Animais , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Radioisótopos do Iodo/administração & dosagem , Melatonina/farmacologia , Melatonina/administração & dosagem , Linhagem Celular Tumoral , Nanopartículas/química , Camundongos , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamato Carboxipeptidase II/metabolismo , Distribuição Tecidual , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia
3.
BioDrugs ; 38(3): 353-367, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520608

RESUMO

Erectile dysfunction (ED) is a common clinical condition that mainly affects men aged over 40 years. Various causes contribute to the progression of ED, including pelvic nerve injury, diabetes, metabolic syndrome, age, Peyronie's disease, smoking, and psychological disorders. Current treatments for ED are limited to symptom relief and do not address the root cause. Stem cells, with their powerful ability to proliferate and differentiate, are a promising approach for the treatment of male ED and are gradually gaining widespread attention. Current uses for treating ED have been studied primarily in experimental animals, with most studies observing improvements in erectile quality as well as improvements in erectile tissue. However, research on stem cell therapy for human ED is still limited. This article summarizes the recent literature on basic stem cell research on ED, including cavernous nerve injury, aging, diabetes, and sclerosing penile disease, and describes mechanisms of action and therapeutic effects of various stem cell therapies in experimental animals. Stem cells are also believed to interact with host tissue in a paracrine manner, and improved function can be supported through both implantation and paracrine factors. To date, stem cells have shown some preliminary promising results in animal and human models of ED.


Assuntos
Disfunção Erétil , Transplante de Células-Tronco , Humanos , Disfunção Erétil/terapia , Masculino , Transplante de Células-Tronco/métodos , Animais , Células-Tronco
4.
Front Oncol ; 13: 1276524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936612

RESUMO

Objective: To analyze the clinical and ultrasonic characteristics of breast sclerosing adenosis (SA) and invasive ductal carcinoma (IDC), and construct a predictive nomogram for SA. Materials and methods: A total of 865 patients were recruited at the Second Hospital of Shandong University from January 2016 to November 2022. All patients underwent routine breast ultrasound examinations before surgery, and the diagnosis was confirmed by histopathological examination following the operation. Ultrasonic features were recorded using the Breast Imaging Data and Reporting System (BI-RADS). Of the 865 patients, 203 (252 nodules) were diagnosed as SA and 662 (731 nodules) as IDC. They were randomly divided into a training set and a validation set at a ratio of 6:4. Lastly, the difference in clinical characteristics and ultrasonic features were comparatively analyzed. Result: There was a statistically significant difference in multiple clinical and ultrasonic features between SA and IDC (P<0.05). As age and lesion size increased, the probability of SA significantly decreased, with a cut-off value of 36 years old and 10 mm, respectively. In the logistic regression analysis of the training set, age, nodule size, menopausal status, clinical symptoms, palpability of lesions, margins, internal echo, color Doppler flow imaging (CDFI) grading, and resistance index (RI) were statistically significant (P<0.05). These indicators were included in the static and dynamic nomogram model, which showed high predictive performance, calibration and clinical value in both the training and validation sets. Conclusion: SA should be suspected in asymptomatic young women, especially those younger than 36 years of age, who present with small-size lesions (especially less than 10 mm) with distinct margins, homogeneous internal echo, and lack of blood supply. The nomogram model can provide a more convenient tool for clinicians.

5.
Zhonghua Nan Ke Xue ; 29(1): 25-30, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-37846828

RESUMO

OBJECTIVE: To compare the safety of transurethral plasma resection of the prostate (TuPkRP) in the treatment of advanced PCa (APC)-related acute urinary retention (AUR) with that in the treatment of BPH-related AUR and investigate the oncologic characteristics of the PCa patient after TuPkRP. METHODS: In this retrospective study, we first compared the baseline data between the patients with APC-related AUR (group A, n = 32) and those with BPH-related AUR (group B, n = 45) as well as their surgical parameters, such as the operation time, pre- and post-operative hemoglobin levels, IPSS at 3 months after TuPkRP and length of postoperative hospital stay. Then, we observed possible TuPkRP-induced tumor progression by comparing the oncologic parameters, such as the PSA level and ECT-manifested bone metastasis, between the APC-AUR patients treated by androgen-deprivation therapy (ADT) + TuPkRP and those treated by ADT only (group C, n = 24). RESULTS: There were no statistically significant differences in the baseline data between the APC-AUR and BPH-AUR patients (P > 0.05). The operation time and postoperative hospital stay were significantly longer in the APC-AUR than in the BPH-AUR group (P < 0.05), but the decreases in the hemoglobin level and IPSS at 3 months after operation showed no significant differences between the two groups of patients (P > 0.05). Besides, no statistically significant differences were observed in the oncologic parameters between the APC-AUR patients treated by ADT + TuPkRP and those by ADT only (P > 0.05). CONCLUSION: The safety of TuPkRP was not significantly lower and the rates of postoperative complications and adverse events were not significantly higher in the patients with APC-related AUR than in those with BPH-related AUR. And this surgical strategy did not significantly improve the progression of APC.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Ressecção Transuretral da Próstata , Retenção Urinária , Masculino , Humanos , Próstata/patologia , Neoplasias da Próstata/complicações , Hiperplasia Prostática/complicações , Hiperplasia Prostática/cirurgia , Hiperplasia Prostática/patologia , Estudos Retrospectivos , Retenção Urinária/etiologia , Antagonistas de Androgênios , Ressecção Transuretral da Próstata/efeitos adversos , Hemoglobinas , Resultado do Tratamento
6.
Transl Cancer Res ; 12(8): 1992-2007, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37701108

RESUMO

Background: High-grade bladder cancer (HGBC) has a higher malignant potential, recurrence and progression rate compared to low-grade phenotype. Its early symptoms are often vague, making non-invasive diagnosis using urinary biomarkers a promising approach. Methods: The gene expression data from urine samples of patients with HGBC was extracted from the GSE68020 dataset. The clinical information and gene expression data in tumor tissues of HGBC patients were obtained from The Cancer Genome Atlas (TCGA) database. Multivariate Cox analysis was used to predict the optimal risk model. The protein-protein interaction (PPI) analysis was performed via the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized using Cytoscape. Overall survival (OS) was evaluated in the Gene Expression Profiling Interactive Analysis (GEPIA) online platform. Competing endogenous RNA (ceRNA) network was also visualized using Cytoscape. The expression levels of specific genes were assessed through quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Moreover, co-expressed genes and potential biological functions related to specific genes were explored based on the Cancer Cell Line Encyclopedia (CCLE) database. Results: A total of 560 differentially expressed genes (DEGs) were identified when comparing the urine sediment samples from HGBC patients with the benign ones. Using these urinary DEGs and the clinical information of HGBC patients, we developed an optimal risk model consisting of eight genes to predict the patient outcome. By integrating the node degree values in the PPI network with the expression changes in both urine and tissue samples, eighteen hub genes were selected out. Among them, DKC1 and SNRPG had the most prominent comprehensive values, and EFTUD2, LOR and EBNA1BP2 were relevant to a worse OS in bladder cancer patients. The ceRNA network of hub genes indicated that DKC1 may be directly regulated by miR-150 in HGBC. The upregulation of both SNRPG and DKC1 were detected in HGBC cells, which were also observed in various tumor tissues and malignant cell lines, displaying high correlations with other hub genes. Conclusions: Our study may provide theoretical basis for the development of effective non-invasive detection and treatment strategies, and further research is necessary to explore the clinical applications of these findings.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37694778

RESUMO

BACKGROUND: Bladder urothelial carcinoma (BUC) ranks second in the incidence of urogenital system tumors, and the treatment of BUC needs to be improved. Puerarin, a traditional Chinese medicine (TCM), has been shown to have various effects such as anti-cancer effects, the promotion of angiogenesis, and anti-inflammation. This study investigates the effects of puerarin on BUC and its molecular mechanisms. METHODS: Through GeneChip experiments, we obtained differentially expressed genes (DEGs) and analyzed these DEGs using the Ingenuity® Pathway Analysis (IPA®), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses. The Cell Counting Kit 8 (CCK8) assay was used to verify the inhibitory effect of puerarin on the proliferation of BUC T24 cells. String combined with Cytoscape® was used to create the Protein-Protein Interaction (PPI) network, and the MCC algorithm in cytoHubba plugin was used to screen key genes. Gene Set Enrichment Analysis (GSEA®) was used to verify the correlation between key genes and cell proliferation. RESULTS: A total of 1617 DEGs were obtained by GeneChip. Based on the DEGs, the IPA® and pathway enrichment analysis showed they were mainly enriched in cancer cell proliferation and migration. CCK8 experiments proved that puerarin inhibited the proliferation of BUC T24 cells, and its IC50 at 48 hours was 218µmol/L. Through PPI and related algorithms, 7 key genes were obtained: ITGA1, LAMA3, LAMB3, LAMA4, PAK2, DMD, and UTRN. GSEA showed that these key genes were highly correlated with BUC cell proliferation. Survival curves showed that ITGA1 upregulation was associated with poor prognosis of BUC patients. CONCLUSION: Our findings support the potential antitumor activity of puerarin in BUC. To the best of our knowledge, bioinformatics investigation suggests that puerarin demonstrates anticancer mechanisms via the upregulation of ITGA1, LAMA3 and 4, LAMB3, PAK2, DMD, and UTRN, all of which are involved in the proliferation and migration of bladder urothelial cancer cells.

8.
Clin Transl Med ; 13(7): e1338, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37488671

RESUMO

BACKGROUND: Recurrent bladder cancer is the most common type of urinary tract malignancy; nevertheless, the mechanistic basis for its recurrence is uncertain. Innovative technologies such as single-cell transcriptomics and spatial transcriptomics (ST) offer new avenues for studying recurrent tumour progression at the single-cell level while preserving spatial data. METHOD: This study integrated single-cell RNA (scRNA) sequencing and ST profiling to examine the tumour microenvironment (TME) of six bladder cancer tissues (three from primary tumours and three from recurrent tumours). FINDINGS: scRNA data-based ST deconvolution analysis revealed a much higher tumour heterogeneity along with TME in recurrent tumours than in primary tumours. High-resolution ST analysis further identified that while the overall natural killer/T cell and malignant cell count or the ratio of total cells was similar or even lower in the recurrent tumours, a higher interaction between epithelial and immune cells was detected. Moreover, the analysis of spatial communication reveals a marked increase in activity between cancer-associated fibroblasts (CAFs) and malignant cells, as well as other immune cells in recurrent tumours. INTERPRETATION: We observed an enhanced interplay between CAFs and malignant cells in bladder recurrent tumours. These findings were first observed at the spatial level.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias da Bexiga Urinária , Humanos , Transcriptoma , Fibroblastos , Bexiga Urinária , Microambiente Tumoral
9.
Biomark Res ; 11(1): 47, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138354

RESUMO

BACKGROUND: Urinary bladder cancer (UBC) is a common malignancy of the urinary tract; however, the mechanism underlying its high recurrence and responses to immunotherapy remains unclear, making clinical outcome predictions difficult. Epigenetic alterations, especially DNA methylation, play important roles in bladder cancer development and are increasingly being investigated as biomarkers for diagnostic or prognostic predictions. However, little is known about hydroxymethylation since previous studies based on bisulfite-sequencing approaches could not differentiate between 5mC and 5hmC signals, resulting in entangled methylation results. METHODS: Tissue samples of bladder cancer patients who underwent laparoscopic radical cystectomy (LRC), partial cystectomy (PC), or transurethral resection of bladder tumor (TURBT) were collected. We utilized a multi-omics approach to analyze both primary and recurrent bladder cancer samples. By integrating various techniques including RNA sequencing, oxidative reduced-representation bisulfite sequencing (oxRRBS), reduced-representation bisulfite sequencing (RRBS), and whole exome sequencing, a comprehensive analysis of the genome, transcriptome, methylome, and hydroxymethylome landscape of these cancers was possible. RESULTS: By whole exome sequencing, we identified driver mutations involved in the development of UBC, including those in FGFR3, KDMTA, and KDMT2C. However, few of these driver mutations were associated with the down-regulation of programmed death-ligand 1 (PD-L1) or recurrence in UBC. By integrating RRBS and oxRRBS data, we identified fatty acid oxidation-related genes significantly enriched in 5hmC-associated transcription alterations in recurrent bladder cancers. We also observed a series of 5mC hypo differentially methylated regions (DMRs) in the gene body of NFATC1, which is highly involved in T-cell immune responses in bladder cancer samples with high expression of PD-L1. Since 5mC and 5hmC alternations are globally anti-correlated, RRBS-seq-based markers that combine the 5mC and 5hmC signals, attenuate cancer-related signals, and therefore, are not optimal as clinical biomarkers. CONCLUSIONS: By multi-omics profiling of UBC samples, we showed that epigenetic alternations are more involved compared to genetic mutations in the PD-L1 regulation and recurrence of UBC. As proof of principle, we demonstrated that the combined measurement of 5mC and 5hmC levels by the bisulfite-based method compromises the prediction accuracy of epigenetic biomarkers.

10.
Signal Transduct Target Ther ; 8(1): 113, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906600

RESUMO

Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Plasticidade Celular , Neoplasias/tratamento farmacológico , Transdução de Sinais , Transição Epitelial-Mesenquimal
11.
J Oncol ; 2023: 4643792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949898

RESUMO

Background: Clear cell renal cell carcinoma's (ccRCC) occurrence and development are strongly linked to the metabolic reprogramming of tumors, and thus far, neither its prognosis nor treatment has achieved satisfying clinical outcomes. Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively, provided us with information on the RNA expression of ccRCC patients and their clinical data. Cuproptosis-related genes (CRGS) were discovered in recent massive research. With the help of log-rank testing and univariate Cox analysis, the prognostic significance of CRGS was examined. Different cuproptosis subtypes were identified using consensus clustering analysis, and GSVA was used to further investigate the likely signaling pathways between various subtypes. Univariate Cox, least absolute shrinkage and selection operator (Lasso), random forest (RF), and multivariate stepwise Cox regression analysis were used to build prognostic models. After that, the models were verified by means of the C index, Kaplan-Meier (K-M) survival curves, and time-dependent receiver operating characteristic (ROC) curves. The association between prognostic models and the tumor immune microenvironment as well as the relationship between prognostic models and immunotherapy were next examined using ssGSEA and TIDE analysis. Four online prediction websites-Mircode, MiRDB, MiRTarBase, and TargetScan-were used to build a lncRNA-miRNA-mRNA ceRNA network. Results: By consensus clustering, two subgroups of cuproptosis were identified that represented distinct prognostic and immunological microenvironments. Conclusion: A prognostic risk model with 13 CR-lncRNAs was developed. The immune microenvironment and responsiveness to immunotherapy are substantially connected with the model, which may reliably predict the prognosis of patients with ccRCC.

12.
Food Funct ; 14(5): 2304-2312, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752527

RESUMO

In mammary epithelial cells, milk fat is synthesized as lipid droplets and secreted in the form of globules. Milk fat globules (MFGs) are covered by a lipid-protein membrane known as the milk fat globule membrane (MFGM). We randomly divided 12 Holstein cows into control and conjugated linoleic acid (CLA) groups. The control group was fed a basal diet, while the CLA group was fed the basal diet + CLA (15 g per kg DM) for 10 days. Cow performance, milk composition, and MFG size were measured daily. On day 10, we extracted MFGM proteins (n = 3) and identified them via quantitative proteomic analysis. We investigated the effects of the MFGM proteins from control and CLA-treated milk on the lipid droplet formation in MAC-T cells. Compared with the control group, the CLA group had reduced milk fat content (3.39 g/100 mL vs. 2.45 g/100 mL) and MFG size parameters (D[4,3] of 3.85 µm vs. 3.37 µm; D[3,2] of 3.24 µm vs. 2.83 µm). The specific surface area (SSA) increased in the CLA group. A total of 361 differentially expressed proteins were identified in the CLA group by iTRAQ quantitative proteomic analysis. Among these proteins, 100 were upregulated and 251 were downregulated (p < 0.05). In MAC-T cells, CLA-MFGM proteins increased the diameter of the lipid droplets to 1.32 µm. CLA-MFGM proteins decreased the proportion of the small lipid droplets (15.33% vs. 47.78%) and increased the proportion of the large lipid droplets (25.04% vs. 11.65%). CLA-MFGM proteins promoted lipid droplet fusion. Therefore, MFGM proteins play an important role in the regulation of the lipid droplet size.


Assuntos
Ácidos Linoleicos Conjugados , Gotículas Lipídicas , Feminino , Bovinos , Animais , Gotículas Lipídicas/metabolismo , Proteínas do Leite/metabolismo , Proteômica , Glicolipídeos/metabolismo , Células Epiteliais/metabolismo , Lactação , Ácidos Linoleicos Conjugados/farmacologia
13.
Drug Resist Updat ; 66: 100907, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527888

RESUMO

The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1 , Resistência a Medicamentos , Imunoterapia , Microambiente Tumoral
14.
MedComm (2020) ; 3(4): e175, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36349142

RESUMO

Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.

15.
Front Genet ; 13: 984279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199571

RESUMO

Background: With the continued advancement of RNA-seq (RNA-sequencing), microRNA (miRNA) editing events have been demonstrated to play an important role in different malignancies. However, there is yet no description of the miRNA editing events in recurrent bladder cancer. Objective: To identify and compare miRNA editing events in primary and recurrent bladder cancer, as well as to investigate the potential molecular mechanism and its impact on patient prognosis. Methods: We examined the mRNA and miRNA transcriptomes of 12 recurrent bladder cancer cases and 13 primary bladder cancer cases. The differentially expressed mRNA sequences were analyzed. Furthermore, we identified the differentially expressed genes (DEGs) in recurrent bladder cancer. The Gene Ontology (GO) functional enrichment analyses on DEGs and gene set enrichment analysis were performed. The consensus molecular subtype (CMS) classification of bladder cancer was identified using the Consensus MIBC package in R (4.1.0); miRNA sequences were then further subjected to differentially expressed analysis and pathway enrichment analysis. MiRNA editing events were identified using miRge3.0. miRDB and TargetScanHuman were used to predict the downstream targets of specific differentially edited or expressed miRNAs. The expression levels of miR-154-5p and ADAR were validated by RT-qPCR. Finally, survival and co-expression studies were performed on the TCGA-BLCA cohort. Results: First, the mRNA expression levels in recurrent bladder cancer changed significantly, supporting progression via related molecular signal pathways. Second, significantly altered miRNAs in recurrent bladder cancer were identified, with miR-154-5p showing the highest level of editing in recurrent bladder cancer and may up-regulate the expression levels of downstream targets HS3ST3A1, AQP9, MYLK, and RAB23. The survival analysis results of TCGA data revealed that highly expressed HS3ST3A1 and RAB23 exhibited poor prognosis. In addition, miR-154 editing events were found to be significant to CMS classification. Conclusion: MiRNA editing in recurrent bladder cancer was detected and linked with poor patient prognosis, providing a reference for further uncovering the intricate molecular mechanism in recurrent bladder cancer. Therefore, inhibiting A-to-I editing of miRNA may be a viable target for bladder cancer treatment, allowing current treatment choices to be expanded and individualized.

16.
Pharmaceutics ; 14(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297587

RESUMO

PURPOSE: Prolyl 3-hydroxylase family member 4 (P3H4) is a potent prognostic oncogene in bladder cancer (BC), and the inhibition of P3H4 suppresses BC tumor growth. This study aimed to evaluate the efficiency of P3H4 inhibition for BC tumor therapy via tumor-targeting nanoparticles. METHODS AND RESULTS: A linear polyarginine peptide (R9) was synthesized, azide-modified, and then assembled with cyclic pentapeptide cRGDfK. Chlorin e6 (ce6)-conjugated CH3-R9-RGD nanoparticles were prepared for the delivery of siP3H4 into T24 cells in vitro and BC tumors in vivo. Dynamic light scattering analysis identified that the optimum CH3-R9-RGD@siP3H4 molar ratio was 30/1. CH3-R9-RGD@ce6/siP3H4 nanocomposites decreased P3H4 expression and cell proliferation and promoted reactive oxygen species production, apoptosis, and calreticulin exposure in T24 cells in vitro. In vivo experiments showed that CH3-R9-RGD@ce6/siP3H4 nanocomposites caused pathological changes, suppressed BC tumor growth, promoted caspase 3 expression, and enhanced calreticulin exposure in tumor cells. CONCLUSIONS: The tumor-targeting CH3-R9-RGD nanocomposites encapsulating siP3H4 and ce6 might be an alternative therapeutic strategy or intravesical instillation chemotherapy for BC.

17.
Sci Rep ; 12(1): 13214, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918384

RESUMO

Most current research has focused on chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma (LUAD) alone; however, it is important to understand the complex mechanism of COPD progression to LUAD. This study is the first to explore the unique and jointly molecular mechanisms in the pathogenesis of COPD and LUAD across several datasets based on a variety of analysis methods. We used weighted correlation network analysis to search hub genes in two datasets from public databases: GSE10072 and GSE76925. We explored the unique and jointly molecular mechanistic signatures of the two diseases in pathogenesis through enrichment analysis, immune infiltration analysis, and therapeutic targets analysis. Finally, the results were confirmed using real-time quantitative reverse transcription PCR. Fifteen hub genes were identified: GPI, EZH2, EFNA4, CFB, ENO1, SH3PXD2B, SELL, CORIN, MAD2L1, CENPF, TOP2A, ASPM, IGFBP2, CDKN2A, and ELF3. For the first time, SELL, CORIN, GPI, and EFNA4 were found to play a role in the etiology of COPD and LUAD. The LUAD genes identified were primarily involved in the cell cycle and DNA replication processes; COPD genes we found were related to ubiquitin-mediated proteolysis, ribosome, and T/B-cell receptor signaling pathways. The tumor microenvironment of LUAD pathogenesis was influenced by CD4 + T cells, type 1 regulatory T cells, and T helper 1 cells. T follicular helper cells, natural killer T cells, and B cells all impact the immunological inflammation in COPD. The results of drug targets analysis suggest that cisplatin and tretinoin, as well as bortezomib and metformin may be potential targeted therapy for patients with COPD combined LUAD. These signatures may be provided a new direction for developing early interventions and treatments to improve the prognosis of COPD and LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Consenso , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , Doença Pulmonar Obstrutiva Crônica/genética , Transcriptoma , Microambiente Tumoral
18.
Front Oncol ; 12: 871687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774124

RESUMO

Background: There is a lack of research on the molecular interaction of the enhancers of rudimentary homolog (ERH) in bladder cancer (BC) cells. This study aimed to determine the interacting proteins of ERH in human T24 cells. Methods: First, the ERH gene was overexpressed in human T24 cells. Coimmunoprecipitation (co-IP) and shotgun mass spectrometry (MS) analyses were performed to obtain a list of proteins that interact with ERH. Subsequently, bioinformatic analyses with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) studies were performed to analyze the ERH-interactive protein list (ERH-IPL). Then, we selected one of the interacting proteins, EIF2α for verification. An immunofluorescence colocalization assay was performed to validate the co-expression of the selected protein, and the binding sites of the two proteins were predicted by ZDOCK technology. Finally, PCR analysis on the downstream molecules of the interacting protein was performed for verification. Results: ERH protein was successfully overexpressed in human T24 cells. We obtained a list of 205 proteins that might directly or indirectly interact with the ERH protein by mass spectrometric analysis. The bioinformatic analysis showed that ERH-interacting proteins were related to "ribonucleoprotein complex", "ATPase activity", "nuclear speck", and "translation factor activity, RNA binding". We further identified one of the key genes, EIF2S1, and confirmed that the corresponding protein EIF2α is co-expressed and may bind with ERH in human T24 cells. The mRNA levels of molecules ATF4 and CHOP were found to be upregulated by ERH. Conclusion: ERH protein affects "ribonucleoprotein complex", "ATPase activity", "nuclear speck", and "translation factor activity, RNA binding". The ERH protein can interact with EIF2α and regulate the EIF2α-ATF4/CHOP signaling pathway in human T24 cells.

19.
Front Oncol ; 12: 900496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677162

RESUMO

Cancer is a major public health problem worldwide. Studies on oncogenes and tumor-targeted therapies have become an important part of cancer treatment development. In this review, we summarize and systematically introduce the gene enhancer of rudimentary homolog (ERH), which encodes a highly conserved small molecule protein. ERH mainly exists as a protein partner in human cells. It is involved in pyrimidine metabolism and protein complexes, acts as a transcriptional repressor, and participates in cell cycle regulation. Moreover, it is involved in DNA damage repair, mRNA splicing, the process of microRNA hairpins as well as erythroid differentiation. There are many related studies on the role of ERH in cancer cells; however, there are none on tumor-targeted therapeutic drugs or related therapies based on the expression of ERH. This study will provide possible directions for oncologists to further their research studies in this field.

20.
World J Clin Cases ; 10(11): 3369-3378, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35611202

RESUMO

BACKGROUND: Shone's complex is a rare syndrome characterized by congenital left heart defects that can differ among the patients. AIM: To use echocardiography in the diagnosis of Shone's complex and analyze the causes of missed diagnosis and misdiagnosis. METHODS: This was a retrospective study of patients who underwent echocardiography and repair surgery from February 14, 2008, to November 22, 2019. The patients were followed once a year at the outpatient clinic after surgery. RESULTS: Sixty-six patients were included. The patients were 2.7 (0.8-5.6) years of age, and 54.5% were male. Ten (15.2%) had a history of heart surgery. The most common heart defect was the Annulo-Leaflet mitral ring (ALMR) (50/66, 75.8%), followed by coarctation of the aorta (CoA) (43/66, 65.2%). The patients had a variety of combinations of defects. Only two (3.0%) patients had all four defects. None of the patients had a family history of congenital heart disease. The preoperative echocardiographic findings were examined against the intraoperative findings. Echocardiography missed an ALMR in 31 patients (47.0%), a parachute mitral valve (PMV) in one patient (1.5%), subaortic stenosis in one patient (1.5%), and CoA in two patients (3.0%). CONCLUSION: Echocardiography is an effective method to diagnose the Shone's complex. Due to this disease's complexity and interindividual variability, Improving the understanding of the disease can reduce misdiagnosis and missed diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA