Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 351: 122849, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897346

RESUMO

EGFR tyrosine kinase inhibitor (TKI) resistance is a major challenge for EGFR-mutant non-small cell lung cancer (NSCLC) treatment. Our previous work revealed that overexpression of AXL promoted EGFR-TKI resistance through epithelial-mesenchymal transition (EMT) in a subset of NSCLC patients. Compared with erlotinib resistant and sensitive cells, RP11-874 J12.4 was upregulated in erlotinib-resistant NSCLC cells (HCC827-ER3). Interestingly, the expression of RP11-874 J12.4 positively correlated with AXL. Besides, RP11-874 J12.4 promotes NSCLC cell proliferation and metastasis in vitro. Mechanistically, RP11-874 J12.4 promoted AXL expression through sponge with miR-34a-5p, which was reported to inhibit the translation of AXL mRNA. Meanwhile, the expression of RP11-874 J12.4 in lung cancer tumors were higher than the adjacent tissue, and those patients with high expression of RP11-874 J12.4 showed a poor prognosis in clinical. High expression of RP11-874 J12.4 might be a biomarker for NSCLC patients with erlotinib resistance. These findings reveal a novel insight into the mechanism of erlotinib resistance in NSCLC, and it might be a promising target for the diagnosis and treatment of NSCLC.


Assuntos
Receptor Tirosina Quinase Axl , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Cloridrato de Erlotinib , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Animais , Camundongos
2.
Nutrients ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36986177

RESUMO

Targeting Nicotinamide adenine dinucleotide (NAD) metabolism has emerged as a promising anti-cancer strategy; we aimed to explore the health benefits of boosting NAD levels with nicotinamide riboside (NR) on hepatocellular carcinoma (HCC). We established three in vivo tumor models, including subcutaneous transplantation tumor model in both Balb/c nude mice (xenograft), C57BL/6J mice (allograft), and hematogenous metastatic neoplasm in nude mice. NR (400 mg/kg bw) was supplied daily in gavage. In-situ tumor growth or noninvasive bioluminescence were measured to evaluate the effect of NR on the HCC process. HepG2 cells were treated with transforming growth factor-ß (TGF-ß) in the absence/presence of NR in vitro. We found that NR supplementation alleviated malignancy-induced weight loss and metastasis to lung in nude mice in both subcutaneous xenograft and hematogenous metastasis models. NR supplementation decreased metastasis to the bone and liver in the hematogenous metastasis model. NR supplementation also significantly decreased the size of allografted tumors and extended the survival time in C57BL/6J mice. In vitro experiments showed that NR intervention inhibited the migration and invasion of HepG2 cells triggered by TGF-ß. In summary, our results supply evidence that boosting NAD levels by supplementing NR alleviates HCC progression and metastasis, which may serve as an effective treatment for the suppression of HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Humanos , Animais , NAD/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Niacinamida/farmacologia , Fator de Crescimento Transformador beta
3.
J Hematol Oncol ; 14(1): 118, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325726

RESUMO

Although chimeric antigen receptor (CAR)-engineered T cells have shown great success in the treatment of B cell malignancies, this strategy has limited efficacy in patients with solid tumors. In mouse CAR-T cells, IL-7 and CCL19 expression have been demonstrated to improve T cell infiltration and CAR-T cell survival in mouse tumors. Therefore, in the current study, we engineered human CAR-T cells to secrete human IL-7 and CCL19 (7 × 19) and found that these 7 × 19 CAR-T cells showed enhanced capacities of expansion and migration in vitro. Furthermore, 7 × 19 CAR-T cells showed superior tumor suppression ability compared to conventional CAR-T cells in xenografts of hepatocellular carcinoma (HCC) cell lines, primary HCC tissue samples and pancreatic carcinoma (PC) cell lines. We then initiated a phase 1 clinical trial in advanced HCC/PC/ovarian carcinoma (OC) patients with glypican-3 (GPC3) or mesothelin (MSLN) expression. In a patient with advanced HCC, anti-GPC3-7 × 19 CAR-T treatment resulted in complete tumor disappearance 30 days post intratumor injection. In a patient with advanced PC, anti-MSLN-7 × 19 CAR-T treatment resulted in almost complete tumor disappearance 240 days post-intravenous infusion. Our results demonstrated that the incorporation of 7 × 19 into CAR-T cells significantly enhanced the antitumor activity against human solid tumor. Trial registration: NCT03198546. Registered 26 June 2017, https://clinicaltrials.gov/ct2/show/NCT03198546?term=NCT03198546&draw=2&rank=1.


Assuntos
Quimiocina CCL19/imunologia , Proteínas Ligadas por GPI/análise , Glipicanas/análise , Imunoterapia Adotiva/métodos , Interleucina-7/imunologia , Neoplasias/terapia , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Feminino , Proteínas Ligadas por GPI/imunologia , Glipicanas/imunologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Mesotelina , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Resultado do Tratamento
4.
J Cell Physiol ; 234(11): 21224-21234, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31032942

RESUMO

Cannabidiol (CBD), an abundant nonpsychoactive constituent of marijuana, has been reported previously to protect against hepatic steatosis. In this study, we studied further the functions and mechanisms of CBD on liver inflammation induced by HFC diet. Mice feeding an HFC diet for 8 weeks were applied to test the protective effect of CBD on livers. RAW264.7 cells were incubated with LPS + ATP ± CBD to study the mechanisms of the effect of CBD against inflammasome activation. We found that CBD alleviated liver inflammation induced by HFC diet. CBD significantly inhibited the nuclear factor-κappa B (NF-κB) p65 nuclear translocation and the activation of nucleotide-binding domain like receptor protein 3 (NLRP3) inflammasome both in vivo and in vitro studies, which lead to the reduction of the expression of inflammation-related factors in our studies. In addition, Inhibitor of activation of NF-κB partly suppressed the NLRP3 inflammasome activation, while adding CBD further inhibited NF-κB activation and correspondingly suppressed the NLRP3 inflammasome activation in macrophages. In conclusion, the suppression of the activation of NLRP3 inflammasome through deactivation of NF-κB in macrophages by CBD might be one mechanism of its anti-inflammatory function in the liver.


Assuntos
Canabidiol/farmacologia , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células RAW 264.7
5.
J Cancer ; 10(3): 757-764, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719175

RESUMO

Switching aerobic respiration to anaerobic glycolysis of cancer cells plays an important role in development and progression of acquired resistance. Since vitamin C enabled the inhibition of glycolysis of cancer cells, and erlotinib-resistant sub-line of HCC827 (ER6 cells) switched its metabolic features to higher glycolysis for survival, we hypothesize that vitamin C is able to inhibit glycolysis of ER6 cells. In this study, we found that both reduced vitamin C and oxidized vitamin C (DHA) could selectively suppress the viability of ER6 cells. DHA was efficient in inhibiting glycolysis and leading to energy crisis, which could be one mechanism for overcoming drug resistance to erlotinib of ER6 cells. Our data suggest that applying DHA could be a novel treatment strategy for NSCLC with acquired resistance to targeted therapy.

6.
Biomed Pharmacother ; 105: 625-632, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29898429

RESUMO

AIM: Cyanidin-3-O-ß-glucoside (Cy-3-G) the most abundant monomer of anthocyanins has multiple protective effects on many diseases. To date, whether Cy-3-G could regulate the function of brown adipose tissue (BAT) is still unclear and whether this regulation could influence the secretion of adipokines from BAT to prevent non-alcoholic fatty liver disease (NAFLD) indirectly remains to be explored. In this study we investigated the effect of Cy-3-G on BAT and the potential role of Cy-3-G to prevent fatty liver through regulating the secretion of BAT. METHODS: Male C57BL/6 J mice were fed with a high fat high cholesterol (HFC) diet with or without 200 mg/kg B.W Cy-3-G for 8 weeks. In in vitro experiments, the differentiated brown adipocytes (BAC) and C3H10T1/2 clone8 cells were treated with 0.2 mM palmitate with or without Cy-3-G for 72 or 96 h. Then the culture media of C3H10T1/2 clone8 cells were collected for measuring the adipokines secretion by immunoblot assay and were applied to culture HepG2 cells or LO2 cells for 24 h. Lipid accumulation in HepG2 cells or LO2 cells were evaluated by oil red O staining. RESULTS: Here we found that Cy-3-G regulated the activation of BAT and the expression of adipokines in BAT which were disrupted by HFC diet and alleviated diet induced fatty liver in mice. In in vitro experiments, Cy-3-G inhibited the release of adipokines including extracellular nicotinamide phosphoribosyltransferase (eNAMPT) and fibroblast growth factor 21 (FGF21) from differentiated C3H10T1/2 clone8 cells induced by palmitate, which was accompanied by a reduction of lipid accumulation in HepG2 cells and LO2 cells cultured by the corresponding collected media of C3H10T1/2 clone8 cells. CONCLUSIONS: These results indicate that Cy-3-G can regulate the thermogenic and secretory functions of BAT. Furthermore, our data suggest that the protective effect of Cy-3-G on hepatic lipid accumulation is probably via regulating the secretion of adipokines from BAT.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo Marrom/metabolismo , Antocianinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Glucosídeos/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Substâncias Protetoras/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Antocianinas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glucosídeos/uso terapêutico , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Substâncias Protetoras/uso terapêutico
7.
Redox Biol ; 17: 89-98, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679894

RESUMO

BACKGROUND: Nicotinamide riboside (NR) is a nicotinamide adenine dinucleotide (NAD+) precursor which is present in foods such as milk and beer. It was reported that NR can prevent obesity, increase longevity, and promote liver regeneration. However, whether NR can prevent ethanol-induced liver injuries is not known. This study aimed to explore the effect of NR on ethanol induced liver injuries and the underlying mechanisms. METHODS: We fed C57BL/6 J mice with Lieber-DeCarli ethanol liquid diet with or without 400 mg/kg·bw NR for 16 days. Liver injuries and SirT1-PGC-1α-mitochondrial function were analyzed. In in vitro experiments, HepG2 cells (CYP2E1 over-expressing cells) were incubated with ethanol ±â€¯0.5 mmol/L NR. Lipid accumulation and mitochondrial function were compared. SirT1 knockdown in HepG2 cells were further applied to confirm the role of SirT1 in the protection of NR on lipid accumulation. RESULTS: We found that ethanol significantly decreased the expression and activity of hepatic SirT1 and induced abnormal expression of enzymes of lipid metabolism in mice. Both in vivo and in vitro experiments showed that NR activated SirT1 through increasing NAD+ levels, decreased oxidative stress, increased deacetylation of PGC-1α and mitochondrial function. In SirT1 knockdown HepG2 cells, NR lost its ability in enhancing mitochondrial function, and its protection against lipid accumulation induced by ethanol. CONCLUSIONS: NR can protect against ethanol induced liver injuries via replenishing NAD+, reducing oxidative stress, and activating SirT1-PGC-1α-mitochondrial biosynthesis. Our data indicate that SirT1 plays an important role in the protection of NR against lipid accumulation and mitochondrial dysfunctions induced by ethanol.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Niacinamida/análogos & derivados , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Longo não Codificante/genética , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Etanol/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , NAD/metabolismo , Niacinamida/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Compostos de Piridínio
8.
J Cancer ; 8(18): 3774-3784, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151965

RESUMO

Efficacy of EGFR-targeted tyrosine kinase inhibitors (TKIs), such as erlotinib, to treat human non-small cell lung cancers (NSCLCs) with activating mutations in EGFR is not persistent due to drug resistance. Reprogramming in energy (especially glucose) metabolism plays an important role in development and progression of acquired resistance in cancer cells. We hypothesize that glucose metabolism in EGFR-TKI sensitive HCC827 cells and erlotinib-resistant sub-line of HCC827 (which we name it as erlotinib-resistant 6, ER6 cells in this study) is different and targeting glucose metabolism might be a treatment strategy for erlotinib-resistant NSCLCs. In this study, we found increased glucose uptakes, significant increase in glycolysis rate and overexpression of glucose transporter 1 in ER6 cells compared to its parental cells HCC827. We also found AKT and autophagy of ER6 cells were more activated than HCC827 cells after glucose starvation. Combining glucose deprivation and AKT or autophagy inhibitor could synergize and overcome the acquired resistance against EGFR-targeted therapy for NSCLCs. Our data suggest that the combinations of inhibitors of AKT or autophagy together with glucose deprivation could be novel treatment strategies for NSCLC with acquired resistance to targeted therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA