Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 272(Pt 1): 132728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825295

RESUMO

Intramuscular fat (IMF) content is mainly determined by intramuscular preadipocyte adipogenesis. Epigenetic modifications are known to have a regulatory effect on IMF. As N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic RNAs. In the present study, we used m6A methylation and RNA sequencing (seq) to identify the m6A-modified RNAs associated with the adipogenic differentiation of intramuscular preadipocytes. Among them, the expression and m6A level of phosphorylase kinase subunit G1 (PHKG1) were found to be significantly changed during adipogenesis. Further studies revealed that knockdown of the methylase METTL3 decreased the m6A methylation of PHKG1 and led to a reduction in PHKG1. Moreover, knockdown of PHKG1 promoted adipogenic differentiation by upregulating the expression of adipogenic genes. In addition, we found that the IMF content in the longissimus thoracis (LT) of Bamei (BM) pigs was greater than that in Large White (LW) pigs, whereas the m6A and PHKG1 expression levels were lower in BM pigs. These findings indicate that the m6A level and expression of PHKG1 were significantly correlated with IMF content and meat quality. In conclusion, this study sheds light on the mechanism by which m6A modification regulates IMF deposition.


Assuntos
Adenosina , Adipócitos , Adipogenia , Animais , Adipócitos/metabolismo , Adipócitos/citologia , Metilação , Suínos , Adipogenia/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Metabolismo dos Lipídeos/genética , Músculo Esquelético/metabolismo , Diferenciação Celular/genética
2.
Mol Reprod Dev ; 91(3): e23738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462735

RESUMO

The parameters of sperm apoptosis and capacitation during liquid storage at 17°C can indicate the quality of pig sperm and the potential development of early embryos. However, the effect of kojic acid (KA) on semen preservation and its mechanism has not been fully understood. In this study, we discovered that adding KA to the diluent improved the antioxidant capacity of sperm mitochondria, maintained the normal structure of sperm mitochondria, and reduced sperm apoptosis. Western blot analysis revealed that KA prevented the release of Cytochrome c from mitochondria to the cytoplasm, reduced the expression of pro-apoptosis proteins cleaved Caspase-3 and cleaved Caspase-9, and increased the expression of the antiapoptosis protein Bcl-XL. Furthermore, KA also enhanced the motility parameters, oxidative phosphorylation level, adenosine triphosphate level, and protein tyrosine phosphorylation of capacitated sperm, while preserving the acrosome integrity and plasma membrane integrity of capacitated sperm. In conclusion, this study offers new insights into the molecular mechanism of how KA inhibits porcine sperm apoptosis and improves capacitated sperm parameters. Additionally, it suggests that KA can serve as an alternative to antibiotics.


Assuntos
Pironas , Preservação do Sêmen , Sêmen , Masculino , Suínos , Animais , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Apoptose , Capacitação Espermática
3.
J Biol Chem ; 300(3): 105760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367663

RESUMO

In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Marrom , Sistema Nervoso Simpático , Termogênese , Proteína Desacopladora 1 , Animais , Camundongos , Tecido Adiposo Bege/inervação , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adrenérgicos/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Camundongos Knockout , Aclimatação/genética , Sistema Nervoso Simpático/fisiologia , Macrófagos/metabolismo
4.
J Biol Chem ; 299(11): 105316, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797697

RESUMO

Lack of estradiol production by granulosa cells blocks follicle development, causes failure of estrous initiation, and results in an inability to ovulate. The ubiquitin-proteasome system plays a critical role in maintaining protein homeostasis and stability of the estrous cycle, but knowledge of deubiquitination enzyme function in estradiol synthesis is limited. Here, we observe that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is more significant in estrous sows and high litter-size sows than in nonestrous sows and low-yielding sows. Overexpression of UCHL1 promotes estradiol synthesis in granulosa cells, and interference with UCHL1 has the opposite effect. UCHL1 binds, deubiquitinates, and stabilizes voltage-dependent anion channel 2 (VDAC2), promoting the synthesis of the estradiol precursor pregnenolone. Cysteine 90 (C90) of UCHL1 is necessary for its deubiquitination activity, and Lys45 and Lys64 in VDAC2 are essential for its ubiquitination and degradation. In vivo, compared with WT and sh-NC-AAV groups, the estrus cycle of female mice is disturbed, estradiol level is decreased, and the number of antral follicles is decreased after the injection of sh-UCHL1-AAV into ovarian tissue. These findings suggest that UCHL1 promotes estradiol synthesis by stabilizing VDAC2 and identify UCHL1 as a candidate gene affecting reproductive performance.


Assuntos
Estradiol , Ubiquitina Tiolesterase , Canal de Ânion 2 Dependente de Voltagem , Animais , Feminino , Camundongos , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Suínos , Ubiquitina Tiolesterase/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Sus scrofa
5.
Theriogenology ; 211: 232-240, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660475

RESUMO

Immature oocyte (germinal vesicle stage, GV) vitrification can avoid a cycle of ovarian stimulation, which is friendly to patients with hormone-sensitive tumors. However, the in vitro maturation of vitrification-thawed GV oocyte usually results in aneuploidy, and the underlying mechanism remains unclear. Stable spindle poles are important for accurate chromosome segregation. Acentriolar microtubule-organizing centers (aMTOCs) undergo fragmentation and reaggregation to form spindle poles. Microtubule nucleation is facilitated via the perichromosome Ran after GVBD, which plays an important role in aMTOCs fragmentation. This study showed that vitrification may reduce microtubule density by decreasing perichromosomal Ran levels, which reduced the localization of pKIF11, thereby decreased the fragmentation of aMTOCs and formed a more focused spindle pole, ultimately resulted in aneuploidy. This study revealed the mechanism of abnormal spindle pole formation in vitrified oocytes and offered a theoretical support to further improve the quality of vitrified oocytes.


Assuntos
Vitrificação , Animais , Camundongos , Oócitos , Aneuploidia , Ciclo Celular , Polos do Fuso
6.
Theriogenology ; 212: 19-29, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683501

RESUMO

During growth, proliferation, differentiation, atresia, ovulation, and luteinization, the morphology and function of granulosa cells (GCs) change. Estrogen and progesterone are steroid hormones secreted by GCs that regulate the ovulation cycle of sows and help maintain pregnancy. miR-10a-5p is highly expressed in GCs and can inhibit GC proliferation. However, the role of miR-10a-5p in the steroid hormone synthesis of porcine GCs is unclear. In this study, miR-10a-5p agomir or antagomir was transfected into GCs. Overexpression of miR-10a-5p in GCs inhibited steroid hormone secretion and significantly downregulated steroid hormone synthesis via 3ß-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1. Interference with miR-10a-5p had the opposite effect. Bodipy and Oil Red O staining showed that overexpression of miR-10a-5p significantly reduced the formation of lipid droplets. Overexpression significantly inhibited the content of total cholesterol esters in GCs. The mRNA and protein levels of 3-hydroxy-3-methylglutaryl-CoA reductase and scavenger receptor class B member 1 decreased significantly, and the opposite effects were seen by interference with miR-10a-5p. Bioinformatic analysis of potential targets identified cAMP-responsive element binding protein 1 as a potential target and dual-luciferase reporter system analysis confirmed that miR-10a-5p directly targets the 3' untranslated region. These findings suggest that miR-10a-5p inhibits the expression of 3ß-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1 to inhibit the synthesis of steroid hormones in GCs. In addition, miR-10a-5p inhibits the cholesterol metabolism pathway of GCs to modulate steroid hormone synthesis.


Assuntos
MicroRNAs , Animais , Feminino , Apoptose , Proliferação de Células , Colesterol/metabolismo , Família 19 do Citocromo P450/metabolismo , Células da Granulosa , Hormônios/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxirredutases/metabolismo , Esteroides/metabolismo , Suínos
7.
Theriogenology ; 212: 172-180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37738821

RESUMO

Gap junction intercellular communication (GJIC) among granulosa cells plays an important role in folliculogenesis, and it is temporal-spatially regulated during follicular development. Connexin (Cx) proteins predominantly form the basal structure of gap junctions in granulosa cells. In our study, immunohistochemical analysis revealed that Cx43 is the most widely expressed connexin in porcine follicles, especially among the large antral follicles. With application of insulin on porcine granulosa cells, we found that insulin significantly facilitated the protein level of Cx43, not mRNA level. This process is dependent on the phosphorylated activities of AKT and Erk since selective AKT and Erk inhibitors, LY294002 and U0126, respectively, hampered the potential of insulin to up-regulate Cx43 protein expression. As a consequence, the insulin-enhanced Cx43-couple GJIC activity in porcine granulosa cells was corresponding attenuated by the administration of LY294002 and U0126. Our findings provide a new insight into the molecular mechanisms by which insulin mediates cell-cell communication in porcine granulosa cells and sheds light on nutrition-reproduction interactions.


Assuntos
Conexina 43 , Insulina , Animais , Feminino , Comunicação Celular/fisiologia , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Células da Granulosa/metabolismo , Insulina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos
8.
Mol Nutr Food Res ; 67(22): e2300130, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770381

RESUMO

SCOPE: Alginic acid (AA) from brown algae is a marine organic compound. There is extensive use of AA in the food industry and healthcare, suggesting a high probability of AA exposure. The present study investigates the effects of AA on porcine ovarian granulosa cells (GCs) and oocytes to explore its mechanism in female reproduction because of its adverse effects on reproduction. METHODS AND RESULTS: The study adds 20 µM AA to the porcine primary ovarian GCs medium and porcine oocyte in vitro maturation (IVM) medium. Estrogen and progesterone levels are downregulated in GCs. Reactive oxygen species are excessive, and the antioxidant capacity declines. Then mitochondria-mediated apoptosis pathway is involved in GCs apoptosis. In addition, scores of autophagosomes are found in the experimental cells. Furthermore, AA significantly inhibits the proliferation of GCs around cumulus-oocyte complexes (COCs) accompanied by abnormal spindle assembly, chromosome arrangement disorder, and aberrant cortical granules distribution in oocytes, leading to a decreased oocyte maturation rate. CONCLUSION: These findings suggest that 20 µM AA is toxic to sow reproduction by interfering with estrogen production, oxidative stress, mitochondria-mediated apoptosis, autophagy in GCs of sows, and oocyte maturation.


Assuntos
Ácido Algínico , Oócitos , Suínos , Feminino , Animais , Ácido Algínico/metabolismo , Ácido Algínico/farmacologia , Oogênese , Células da Granulosa , Estrogênios/metabolismo
9.
Theriogenology ; 202: 51-60, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921565

RESUMO

Circadian locomotor output cycles kaput (CLOCK) is a critical component of the mammalian circadian clock system and regulates ovarian physiology. However, the functions and mechanisms of CLOCK in porcine granulosa cells (GCs) are poorly understood. The present study focused on CLOCK's effects on estradiol synthesis. Similarity analysis showed that CLOCK is highly conserved between pigs and other species. The phylogenetic tree analysis indicated that porcine CLOCK was most closely related to that in Arabian camels. CLOCK significantly reduced E2 synthesis in GCs. CLOCK reduced the expression of steroidogenesis-related genes at the mRNA and protein levels, including CYP19A1, CYP11A1, and StAR. CYP17A1 levels were significantly downregulated. We demonstrated that CLOCK dramatically decreased ATP content, mitochondrial copy number, and mitochondrial membrane potential (MMP) and increased reactive oxygen species levels in GCs. We observed that mitochondria were severely damaged with fuzzy and fractured cristae and swollen matrix. These findings suggest that mitochondrial function and E2 synthesis are impaired following the alteration of CLOCK gene expression in porcine ovarian GCs.


Assuntos
Regulação da Expressão Gênica , Células da Granulosa , Feminino , Suínos , Animais , Filogenia , Células da Granulosa/fisiologia , Estradiol/metabolismo , Mitocôndrias/metabolismo , Expressão Gênica , Mamíferos
10.
Meat Sci ; 198: 109116, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36657261

RESUMO

Reducing backfat thickness (BFT), determined by subcutaneous fat deposition, is vital in Chinese developed pig breeds. The level of miR-503 in the backfat of Guanzhong Black pigs was found to be lower than that in Large White pigs, implying that miR-503 may be related to BFT. However, the effect and mechanism of miR-503 on adipogenic differentiation in subcutaneous preadipocytes remain unknown. Compared with Large White pigs, the BFT and body fat content of Guanzhong Black pigs were greater, but the level of miR-503 was lower in subcutaneous adipose tissue (SAT) at 180 days of age. Furthermore, miR-503 promoted preadipocyte proliferation by increasing the proportion of S-phase and EdU-positive cells. However, miR-503 inhibited preadipocyte differentiation by downregulating adipogenic gene expression. Mechanistically, miR-503 directly targeted musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) in both proliferating and differentiating preadipocytes to repress adipogenesis. Our findings provide a novel miRNA biomarker for reducing pig BFT levels to improve carcass quality.


Assuntos
Adipogenia , MicroRNAs , Animais , Adipogenia/genética , Tecido Adiposo , Diferenciação Celular/genética , MicroRNAs/genética , Gordura Subcutânea/metabolismo , Suínos/genética , Fator de Transcrição MafK/metabolismo
11.
Theriogenology ; 194: 1-12, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183492

RESUMO

The proliferation and steroidogenesis of mammalian ovarian granulosa cells (GCs) are related to follicular development. Previous studies found that fibroblast growth factor 21 (FGF21) regulated female fertility through the hypothalamic-pituitary-gonad axis. However, FGF21 receptors are expressed on GCs, so we speculate that it might affect female reproduction by regulating their physiological activities. Here, we showed that FGF21, fibroblast growth factor receptor-1(FGFR1), and beta-klotho (KLB) were expressed in porcine GCs. ELISA assays showed that estradiol (E2) production was increased significantly when treating GCs with recombinant FGF21 (rFGF21). In addition, rFGF21 upregulated the mRNA and protein levels of E2 synthesis-related genes including StAR, CYP11A1, and CYP19A1 in porcine GCs. Correspondingly, FGF21 siRNA inhibited E2 levels and its synthesis-related gene expression. After rFGF21 treatment, CCK8 showed increased cell viability, and flow cytometry showed that the number of S phase increased, and cycle-related genes also increased. However, treatment with FGF21 siRNA to porcine GCs suppressed the cell cycle, viability, and EdU positive cell number. Consequently, FGF21/FGFR1/KLB forms a complex to activate the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signaling pathway and further promote the proliferation and E2 synthesis in porcine GCs. Collectively, these findings suggests that FGF21 regulates porcine ovarian folliculogenesis.


Assuntos
Estradiol , Fosfatidilinositol 3-Quinases , Feminino , Suínos , Animais , Estradiol/farmacologia , Estradiol/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Células da Granulosa/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Proliferação de Células/genética , Mamíferos
12.
Mol Cell Endocrinol ; 558: 111765, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049599

RESUMO

Estradiol (E2) synthesis, cell proliferation and the apoptosis of porcine granulosa cells (GCs) affect follicular growth and development. The miR-184 level in ovary tissues of Yorkshire × Landrace sows was significantly higher in high-yielding sows than that in low-yielding sows, which was the same as in Yorkshire sows. However, the roles of miR-184 on E2 granulosa cells (GCs) are still unclear. We found that miR-184 promoted E2 synthesis and proliferation but inhibited apoptosis in GCs by targeting nuclear receptor subfamily 1 group D member 1 (NR1D1), cyclin dependent kinase inhibitor 1A (P21,CDKN1A) and homeodomain interacting protein kinase 2 (HIPK2) respectively. These findings indicated that miR-184 is a novel key factor that regulates the physiological functions of GCs.


Assuntos
MicroRNAs , Suínos , Feminino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células da Granulosa/metabolismo , Proliferação de Células/genética , Apoptose/genética , Estradiol/farmacologia , Estradiol/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Quinases/metabolismo
13.
J Biochem Mol Toxicol ; 36(9): e23120, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35670589

RESUMO

Bisphenol A (BPA), as a widely used plasticizer, is easily absorbed by animals and humans. It has certain toxic effects on various tissues, including liver, heart, kidney, testis, and ovary. The toxic effects of BPA on animal reproduction have aroused widespread concern, but its regulatory mechanism and antidote in female animals estrus cycle remain unclear. In this study, the results displayed that BPA destroyed the normal estrus cycle of mice through decreasing the levels of progesterone and estradiol. Furthermore, BPA significantly increased the levels of oxidative stress, autophagy, and apoptosis in ovaries and granulosa cells. Interestingly, we found that the natural antioxidant resveratrol rescued estrus disorder and impaired estradiol secretion, reduced the abnormal reactive oxygen species accumulation, autophagy, and apoptosis in BPA exposed ovarian tissues. Moreover, transmission electron microscopy showed that resveratrol reduced BPA-induced autophagic vesicles formation and flow cytometry showed that resveratrol inhibited the increase of apoptotic cells induced by BPA on granulosa cells. Therefore, the supplement of resveratrol could restore BPA-induced estrus disorder by protecting ovarian granulosa cells. Overall, resveratrol is a potential drug to alleviate BPA-induced estrous cycle disorders and ovarian damage.


Assuntos
Antioxidantes , Progesterona , Animais , Antídotos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Autofagia , Compostos Benzidrílicos/toxicidade , Estradiol/farmacologia , Estro , Feminino , Humanos , Masculino , Camundongos , Estresse Oxidativo , Fenóis , Plastificantes/farmacologia , Progesterona/farmacologia , Espécies Reativas de Oxigênio , Resveratrol/farmacologia
14.
Reprod Domest Anim ; 57(10): 1187-1197, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35727184

RESUMO

Porcine sperm is rich in polyunsaturated fatty acids; therefore, it is highly susceptible to oxidative damage during storage. Inhibition of oxidative stress during preservation is essential for maintaining sperm motility. Astaxanthin is a potent antioxidant used in the cosmetic and pharmaceutical industries. This study aimed to explore the effect of supplementing astaxanthin as an extender of porcine semen preservation dilutions at 17°C. Various concentrations of astaxanthin were added to diluted porcine semen at 17°C. We performed computer-assisted semen analysis, evaluation of plasma membrane integrity and acrosome integrity, and measurement of total antioxidant activity, malondialdehyde (MDA) content, reactive oxygen species levels, superoxide dismutase (SOD) activity, catalase (CAT) activity, glutathione peroxidase (GSH-PX) activity and sperm motility parameters. Compared with the control group, the addition of 0.25 µg/ml astaxanthin group significantly improved sperm motility parameters stored on the fifth day; these were increased levels of sperm SOD, GSH-PX and CAT (p < .05), increased sperm adenosine trisphosphate and lactate dehydrogenase levels and decreased sperm MDA levels (p < .05). These findings suggest that adding 0.25 µg/ml of astaxanthin improves the quality of porcine semen stored at 17°C. Our findings provide theoretical support for developing new protective agents critical for preserving pig semen at 17°C.


Assuntos
Análise do Sêmen , Preservação do Sêmen , Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/farmacologia , Glutationa Peroxidase , Lactato Desidrogenases/metabolismo , Masculino , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sêmen/fisiologia , Análise do Sêmen/veterinária , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Superóxido Dismutase/metabolismo , Suínos , Xantofilas
15.
Cell Signal ; 95: 110341, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491006

RESUMO

Long non-coding RNAs (lncRNAs) play essential roles in myogenesis. Here, we identified a novel long non-coding RNA, named COPS3 AS lncRNA (COP9 signalosome complex subunit 3 antisense lncRNA), which was transcribed from the mouse COPS3 gene antisense strand and highly expressed in glycolytic muscle fibers. Functionally, COPS3 AS lncRNA knockdown inhibited myogenic differentiation in myoblasts, whereas its overexpression promoted the process. Moreover, COPS3 AS lncRNA maintained the fast-twitch myotubes phenotype. Mechanistically, although COPS3 AS lncRNA did not form AS lncRNA/mRNA dimer with COPS3 mRNA, it as a competing endogenous RNA (ceRNA) to sponge miR-762, promoted myogenic differentiation and Fast-MyHC expression by modulating miR-762 target gene myogenic differentiation 1 (MyoD1). Taken together, COPS3 AS lncRNA is a key candidate regulator of myogenesis and fast-MyHC myotubes specification by miR-762/MyoD signalling axis.


Assuntos
Complexo do Signalossomo COP9 , MicroRNAs , Proteínas Proto-Oncogênicas , RNA Longo não Codificante , Animais , Complexo do Signalossomo COP9/genética , Diferenciação Celular , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
16.
Theriogenology ; 180: 17-29, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933195

RESUMO

The circadian system performs an important role in mammalian reproduction with significant effects on hormone secretion. Nuclear receptor subfamily 1 group D member 1 (NR1D1) functions as a transcriptional repressor in the circadian system and affects granulosa cells (GCs), but how it regulates estrogen synthesis has not been clarified. We investigated the effect of NR1D1 on estrogen synthesis and found that NR1D1 was highly expressed in GCs, mainly in cell nuclei. Additionally, the expression of NR1D1 and estrogen synthesis key genes CYP19A1, CYP11A1 and StAR showed rhythmic changes in porcine ovarian GCs. Activation of NR1D1 enhances its ability to inhibit the transcriptional activity of CYP19A1 by binding to the RORE on the CYP19A1 promoter, resulting in a decrease in estradiol content. Interference with NR1D1 can eliminate the transcriptional inhibition of CYP19A1 and promote the synthesis of estradiol. The results suggest that the hormone secretion of the ovary itself is also regulated by the biological clock, and any factors that affect the circadian rhythm can affect the endocrine and reproductive performance of sows, so the natural rhythm of sows should be maintained in production.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Estradiol , Células da Granulosa , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Animais , Estradiol/biossíntese , Estrogênios/biossíntese , Feminino , Células da Granulosa/metabolismo , Regiões Promotoras Genéticas , Suínos
17.
Adipocyte ; 10(1): 587-604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709975

RESUMO

Exosomes are nano-sized extracellular vesicles (30-160 nm diameter) with lipid bilayer membrane secrete by various cells that mediate the communication between cells and tissue, which contain a variety of non-coding RNAs, mRNAs, proteins, lipids and other functional substances. Adipose tissue is important energy storage and endocrine organ in the organism. Recent studies have revealed that adipose tissue-derived exosomes (AT-Exosomes) play a critical role in many physiologically and pathologically functions. Physiologically, AT-Exosomes could regulate the metabolic homoeostasis of various organs or cells including liver and skeletal muscle. Pathologically, they could be used in the treatment of disease and or that they may be involved in the progression of the disease. In this review, we describe the basic principles and methods of exosomes isolation and identification, as well as further summary the specific methods. Moreover, we categorize the relevant studies of AT-Exosomes and summarize the different components and biological functions of mammalian exosomes. Most importantly, we elaborate AT-Exosomes crosstalk within adipose tissue and their functions on other tissues or organs from the physiological and pathological perspective. Based on the above analysis, we discuss what remains to be discovered problems in AT-Exosomes studies and prospect their directions needed to be further explored in the future.


Assuntos
Exossomos , Vesículas Extracelulares , Tecido Adiposo/metabolismo , Animais , Transporte Biológico , Homeostase
18.
J Biol Chem ; 296: 100376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548229

RESUMO

Skeletal muscle is one of the most important organs of the animal body. Long noncoding RNAs play a crucial role in the regulation of skeletal muscle development via several mechanisms. We recently identified obesity-related lncRNA (lnc-ORA) in a search for long noncoding RNAs that influence adipogenesis, finding it impacted adipocyte differentiation by regulating the PI3K/protein kinase B/mammalian target of rapamycin pathway. However, whether lnc-ORA has additional roles, specifically in skeletal muscle myogenesis, is not known. Here, we found that lnc-ORA was significantly differentially expressed with age in mouse skeletal muscle tissue and predominantly located in the cytoplasm. Overexpression of lnc-ORA promoted C2C12 myoblast proliferation and inhibited myoblast differentiation. In contrast, lnc-ORA knockdown repressed myoblast proliferation and facilitated myoblast differentiation. Interestingly, silencing of lnc-ORA rescued dexamethasone-induced muscle atrophy in vitro. Furthermore, adeno-associated virus 9-mediated overexpression of lnc-ORA decreased muscle mass and the cross-sectional area of muscle fiber by upregulating the levels of muscle atrophy-related genes and downregulating the levels of myogenic differentiation-related genes in vivo. Mechanistically, lnc-ORA inhibited skeletal muscle myogenesis by acting as a sponge of miR-532-3p, which targets the phosphatase and tensin homolog gene; the resultant changes in phosphatase and tensin homolog suppressed the PI3K/protein kinase B signaling pathway. In addition, lnc-ORA interacted with insulin-like growth factor 2 mRNA-binding protein 2 and reduced the stability of myogenesis genes, such as myogenic differentiation 1 and myosin heavy chain. Collectively, these findings indicate that lnc-ORA could be a novel underlying regulator of skeletal muscle development.


Assuntos
Desenvolvimento Muscular/genética , Proteínas de Ligação a RNA/metabolismo , Adipogenia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais
19.
J Biol Chem ; 296: 100037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33158991

RESUMO

With the improvement of people's living standards, the number of obese patients has also grown rapidly. It is reported that the level of oxidative stress in obese patients has significantly increased, mainly caused by the increase in reactive oxygen species (ROS) levels in adipose tissue. Studies have shown that the use of siRNA to interfere with bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) expression could promote adipocyte differentiation, and under hypoxic conditions, BAMBI could act as a regulator of HIF1α to regulate the polarity damage of epithelial cells. In view of these results, we speculated that BAMBI may regulate adipogenesis by regulating the level of ROS. In this study, we generated adipose-specific BAMBI knockout mice (BAMBI AKO) and found that compared with control mice, BAMBI AKO mice showed obesity when fed with high-fat diet, accompanied by insulin resistance, glucose intolerance, hypercholesterolemia, and increased inflammation in adipose tissue. Interestingly, adipose-specific deficiency of BAMBI could cause an increase in the expression level of Nox4, thereby promoting ROS production in cytoplasm and mitochondria and the DNA-binding activity of C/EBPß and ultimately promoting adipogenesis. Consistently, our findings indicated that BAMBI may be a reactive oxygen regulator to affect adipogenesis, thereby controlling obesity and metabolic syndrome.


Assuntos
Adipogenia , Tecido Adiposo/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Membrana/genética , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Tecido Adiposo/citologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Dieta Hiperlipídica , Fígado Gorduroso/genética , Humanos , Resistência à Insulina/genética , Camundongos , Camundongos Knockout
20.
Cells ; 8(5)2019 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109074

RESUMO

Obesity is closely associated with numerous adipogenic regulatory factors, including coding and non-coding genes. Long noncoding RNAs (lncRNAs) play a major role in adipogenesis. However, differential expression profiles of lncRNAs in inguinal white adipose tissue (iWAT) between wild-type (WT) and ob/ob mice, as well as their roles in adipogenesis, are not well understood. Here, a total of 2809 lncRNAs were detected in the iWAT of WT and ob/ob mice by RNA-Sequencing (RNA-Seq), including 248 novel lncRNAs. Of them, 46 lncRNAs were expressed differentially in WT and ob/ob mice and were enriched in adipogenesis signaling pathways as determined by KEGG enrichment analysis, including the PI3K/AKT/mTOR and cytokine-cytokine receptor interaction signaling pathways. Furthermore, we focused on one novel lncRNA, which we named lnc-ORA (obesity-related lncRNA), which had a seven-fold higher expression in ob/ob mice than in WT mice. Knockdown of lnc-ORA inhibited preadipocyte proliferation by decreasing the mRNA and protein expression levels of cell cycle markers. Interestingly, lnc-ORA knockdown inhibited adipocyte differentiation by regulating the PI3K/AKT/mTOR signaling pathway. In summary, these findings contribute to a better understanding of adipogenesis in relation to lncRNAs and provide novel potential therapeutic targets for obesity-related metabolic diseases.


Assuntos
Adipogenia/genética , Técnicas de Silenciamento de Genes , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA-Seq , Serina-Treonina Quinases TOR/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diferenciação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , RNA Mensageiro/genética , Transcriptoma , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA