RESUMO
The pathophysiology of chronic thromboembolic pulmonary hypertension (CTEPH) is largely unknown. Although pulmonary endarterectomy (PEA) is potentially curative, inoperable patients and persistent pulmonary hypertension (PH) following surgery remain a significant problem. In this study, we aim to describe the histopathological characteristics of CTEPH and explore the potential relationship between pulmonary arterial lesions, radiological parameters, and clinical manifestations. Endarterectomized tissues from 81 consecutive patients of CTEPH were carefully collected, sectioned, and examined by experienced pathologists. Pertinent clinical and radiological data were obtained from medical records and operative reports. Neointima, fresh/organized thrombi, recanalized regions, and atherosclerotic lesions were microscopically examined as previously described. Thrombi and atherosclerosis were dominant in UCSD classification level I PEA materials, while recanalized neo-vessels were more frequently observed in UCSD classification level III cases. Degenerative changes of the extracellular matrix were also noticed in the vascular bed. Atherosclerotic lesions were more frequently observed in cases with higher ratio of the pulmonary artery diameter to ascending aorta diameter (PA/AA) reflected by computed tomographic pulmonary arterial scanning. Furthermore, the removal of pulmonary artery complex lesions (with the combination of three to four types of lesions) by PEA was associated with lower postoperative mean pulmonary arterial pressure (mPAP) and decreased incidences of persistent PH. Our study demonstrates that the histopathological features of CTEPH are strongly linked with clinical manifestations and the postoperative outcome after PEA. These data may provide possible evidence for further studies in searching for appropriate causal factors underlying this disease.
RESUMO
The aim of this study was to understand the importance of chronic thromboembolic pulmonary hypertension- (CTEPH-) associated microRNAs (miRNAs). miRNAs differentially expressed in CTEPH samples compared with control samples were identified, and the target genes were predicted. The target genes of the key differentially expressed miRNAs were analyzed, and functional enrichment analyses were carried out. Finally, the miRNAs were detected using RT-PCR. Among the downregulated miRNAs, MiR-3148 regulated the most target genes and was significantly enriched in pathways in cancer, glioma, and ErbB signaling pathway. Furthermore, the number of target genes coregulated by miR-3148 and other miRNAs was the most. AR (androgen receptor), a target gene of hsa-miR-3148, was enriched in pathways in cancer. PRKCA (Protein Kinase C Alpha), also a target gene of hsa-miR-3148, was enriched in 15 of 16 KEGG pathways, such as pathways in cancer, glioma, and ErbB signaling pathway. In addition, the RT-PCR results showed that the expression of hsa-miR-3148 in CTEPH samples was significantly lower than that in control samples (P < 0.01). MiR-3148 may play an important role in the development of CTEPH. The key mechanisms for this miRNA may be hsa-miR-3148-AR-pathways in cancer or hsa-miR-3148-PRKCA-pathways in cancer/glioma/ErbB signaling pathway.