Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227343

RESUMO

OBJECTIVE: Combining adeno-associated virus (AAV)-mediated expression of Cre recombinase with genetically modified floxed animals is a powerful approach for assaying the functional role of genes in regulating behavior and metabolism. Extensive research in diverse cell types and tissues using AAV-Cre has shown it can save time and avoid developmental compensation as compared to using Cre driver mouse line crossings. We initially sought to study the impact of ablation of corticotropin-releasing hormone (CRH) in the paraventricular hypothalamic nucleus (PVN) using intracranial AAV-Cre injection in adult animals. METHODS: In this study, we stereotactically injected AAV8-hSyn-Cre or a control AAV8-hSyn-GFP both Crh-floxed and wild-type mouse PVN to assess behavioral and metabolic impacts. We then used immunohistochemical markers to systematically evaluate the density of hypothalamic peptidergic neurons and glial cells. RESULTS: We found that delivery of one specific preparation of AAV8-hSyn-Cre in the PVN led to the development of obesity, hyperphagia, and anxiety-like behaviors. This effect occurred independent of sex and in both floxed and wild-type mice. We subsequently found that AAV8-hSyn-Cre led to neuronal cell death and gliosis at the site of viral vector injections. These behavioral and metabolic deficits were dependent on injection into the PVN. An alternatively sourced AAV-Cre did not reproduce the same results. CONCLUSIONS: Our findings reveal that delivery of a specific batch of AAV-Cre could lead to cellular toxicity and lesions in the PVN that cause robust metabolic and behavioral impacts. These alterations can complicate the interpretation of Cre-mediated gene knockout and highlight the need for rigorous controls.

2.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961695

RESUMO

Objective: Combining adeno-associated virus (AAV)-mediated expression of Cre recombinase with genetically modified floxed animals is a powerful approach for assaying the functional role of genes in regulating behavior and metabolism. Extensive research in diverse cell types and tissues using AAV-Cre has shown it can save time and avoid developmental compensation as compared to using Cre driver mouse line crossings. We initially sought to study the impact of ablation of corticotropin-releasing hormone (CRH) in the paraventricular hypothalamic nucleus (PVN) using intracranial AAV-Cre injection in adult animals. Methods: In this study, we stereotactically injected AAV8-hSyn-Cre or a control AAV8-hSyn-GFP both Crh-floxed and wild-type mouse PVN to assess behavioral and metabolic impacts. We then used immunohistochemical markers to systematically evaluate the density of hypothalamic peptidergic neurons and glial cells. Results: We found that delivery of one specific preparation of AAV8-hSyn-Cre in the PVN led to the development of obesity, hyperphagia, and anxiety-like behaviors. This effect occurred independent of sex and in both floxed and wild-type mice. We subsequently found that AAV8-hSyn-Cre led to neuronal cell death and gliosis at the site of viral vector injections. These behavioral and metabolic deficits were dependent on injection into the PVN. An alternatively sourced AAV-Cre did not reproduce the same results. Conclusions: Our findings reveal that delivery of a specific batch of AAV-Cre could lead to cellular toxicity and lesions in the PVN that cause robust metabolic and behavioral impacts. These alterations can complicate the interpretation of Cre-mediated gene knockout and highlight the need for rigorous controls.

3.
Nat Neurosci ; 25(1): 61-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980924

RESUMO

Hypothalamic melanin-concentrating hormone (MCH) polypeptide contributes to regulating energy homeostasis, sleep and memory, although the mechanistic bases of its effects are unknown. In this study, in mice, we uncovered the physiological mechanism underlying the functional role of MCH signaling in projections to the dorsolateral septum (dLS), a region involved in routing hippocampal firing rhythms and encoding spatial memory based on such rhythms. Firing activity within the dLS in response to dorsal CA3 (dCA3) excitation is limited by strong feed-forward inhibition (FFI). We found that MCH synchronizes dLS neuronal firing with its dCA3 inputs by enhancing GABA release, which subsequently reduces the FFI and augments dCA3 excitatory input strength, both via pre-synaptic mechanisms. At the functional level, our data reveal a role for MCH signaling in the dLS in facilitating spatial memory. These findings support a model in which peptidergic signaling within the dLS modulates dorsal hippocampal output and supports memory encoding.


Assuntos
Hormônios Hipotalâmicos , Animais , Hipocampo/fisiologia , Hormônios Hipotalâmicos/metabolismo , Melaninas , Camundongos , Hormônios Hipofisários
4.
Neuropsychopharmacology ; 46(10): 1746-1756, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34007041

RESUMO

Repeated nicotine exposure leads to sensitization (SST) and enhances self-administration (SA) in rodents. However, the molecular basis of nicotine SST and SA and their biological relevance to the mounting genome-wide association study (GWAS) loci of human addictive behaviors are poorly understood. Considering a gateway drug role of nicotine, we modeled nicotine SST and SA in F1 progeny of inbred rats (F344/BN) and conducted integrative genomics analyses. We unexpectedly observed male-specific nicotine SST and a parental effect of SA only present in paternal F344 crosses. Transcriptional profiling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) core and shell further revealed sex- and brain region-specific transcriptomic signatures of SST and SA. We found that genes associated with SST and SA were enriched for those related to synaptic processes, myelin sheath, and tobacco use disorder or chemdependency. Interestingly, SST-associated genes were often downregulated in male VTA but upregulated in female VTA, and strongly enriched for smoking GWAS risk variants, possibly explaining the male-specific SST. For SA, we found widespread region-specific allelic imbalance of expression (AIE), of which genes showing AIE bias toward paternal F344 alleles in NAc core were strongly enriched for SA-associated genes and for GWAS risk variants of smoking initiation, likely contributing to the parental effect of SA. Our study suggests a mechanistic link between transcriptional changes underlying the NIC SST and SA and human nicotine addiction, providing a resource for understanding the neurobiology basis of the GWAS findings on human smoking and other addictive phenotypes.


Assuntos
Comportamento Aditivo , Nicotina , Animais , Comportamento Aditivo/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fenótipo , Ratos , Ratos Endogâmicos F344
5.
Transl Psychiatry ; 10(1): 396, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177511

RESUMO

Early-life stress (ELS) leads to stress-related psychopathology in adulthood. Although dysfunction of corticotropin-releasing hormone (CRH) signaling in the bed nucleus of the stria terminalis (BNST) mediates chronic stress-induced maladaptive affective behaviors that are historically associated with mood disorders such as anxiety and depression, it remains unknown whether ELS affects CRH function in the adult BNST. Here we applied a well-established ELS paradigm (24 h maternal separation (MS) at postnatal day 3) and assessed the effects on CRH signaling and electrophysiology in the oval nucleus of BNST (ovBNST) of adult male mouse offspring. ELS increased maladaptive affective behaviors, and amplified mEPSCs and decreased M-currents (a voltage-gated K+ current critical for stabilizing membrane potential) in ovBNST CRH neurons, suggesting enhanced cellular excitability. Furthermore, ELS increased the numbers of CRH+ and PACAP+ (the pituitary adenylate cyclase-activating polypeptide, an upstream CRH regulator) cells and decreased STEP+ (striatal-enriched protein tyrosine phosphatase, a CRH inhibitor) cells in BNST. Interestingly, ELS also increased BNST brain-derived neurotrophic factor (BDNF) expression, indicating enhanced neuronal plasticity. These electrophysiological and behavioral effects of ELS were reversed by chronic application of the CRHR1-selective antagonist R121919 into ovBNST, but not when BDNF was co-administered. In addition, the neurophysiological effects of BDNF on M-currents and mEPSCs in BNST CRH neurons mimic effects and were abolished by PKC antagonism. Together, our findings indicate that ELS results in a long-lasting activation of CRH signaling in the mouse ovBNST. These data highlight a regulatory role of CRHR1 in the BNST and for BDNF signaling in mediating ELS-induced long-term behavioral changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hormônio Liberador da Corticotropina , Núcleos Septais , Estresse Psicológico , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Privação Materna , Núcleos Septais/metabolismo
6.
J Neurosci ; 40(12): 2519-2537, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32054675

RESUMO

The bed nucleus of the stria terminalis (BNST) is a forebrain region highly responsive to stress that expresses corticotropin-releasing hormone (CRH) and is implicated in mood disorders, such as anxiety. However, the exact mechanism by which chronic stress induces CRH-mediated dysfunction in BNST and maladaptive behaviors remains unclear. Here, we first confirmed that selective acute optogenetic activation of the oval nucleus BNST (ovBNST) increases maladaptive avoidance behaviors in male mice. Next, we found that a 6 week chronic variable mild stress (CVMS) paradigm resulted in maladaptive behaviors and increased cellular excitability of ovBNST CRH neurons by potentiating mEPSC amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential) in ex vivo slices. CVMS also increased c-fos+ cells in ovBNST following handling. We next investigated potential molecular mechanism underlying the electrophysiological effects and observed that CVMS increased CRH+ and pituitary adenylate cyclase-activating polypeptide+ (PACAP; a CRH upstream regulator) cells but decreased striatal-enriched protein tyrosine phosphatase+ (a STEP CRH inhibitor) cells in ovBNST. Interestingly, the electrophysiological effects of CVMS were reversed by CRHR1-selective antagonist R121919 application. CVMS also activated protein kinase A (PKA) in BNST, and chronic infusion of the PKA-selective antagonist H89 into ovBNST reversed the effects of CVMS. Coadministration of the PKA agonist forskolin prevented the beneficial effects of R121919. Finally, CVMS induced an increase in surface expression of phosphorylated GluR1 (S845) in BNST. Collectively, these findings highlight a novel and indispensable stress-induced role for PKA-dependent CRHR1 signaling in activating BNST CRH neurons and mediating maladaptive behaviors.SIGNIFICANCE STATEMENT Chronic stress and acute activation of oval bed nucleus of the stria terminalis (ovBNST) induces maladaptive behaviors in rodents. However, the precise molecular and electrophysiological mechanisms underlying these effects remain unclear. Here, we demonstrate that chronic variable mild stress activates corticotropin-releasing hormone (CRH)-associated stress signaling and CRH neurons in ovBNST by potentiating mEPSC amplitude and decreasing M-current in male mice. These electrophysiological alterations and maladaptive behaviors were mediated by BNST protein kinase A-dependent CRHR1 signaling. Our results thus highlight the importance of BNST CRH dysfunction in chronic stress-induced disorders.


Assuntos
Adaptação Psicológica , Hormônio Liberador da Corticotropina/fisiologia , Núcleos Septais/fisiologia , Transdução de Sinais/fisiologia , Estresse Psicológico/psicologia , Animais , Doença Crônica , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Genes fos , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Canais de Potássio/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores
7.
Tissue Eng Part A ; 26(3-4): 193-205, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31537172

RESUMO

Cell replacement therapy is a promising treatment strategy for Parkinson's disease (PD); however, the poor survival rate of transplanted neurons is a critical barrier to functional recovery. In this study, we used self-assembling peptide nanofiber scaffolds (SAPNS) based on the peptide RADA16-I to support the in vitro maturation and in vivo post-transplantation survival of encapsulated human dopaminergic (DA) neurons derived from induced pluripotent stem cells. Neurons encapsulated within the SAPNS expressed mature neuronal and midbrain DA markers and demonstrated in vitro functional activity similar to neurons cultured in two dimensions. A microfluidic droplet generation method was used to encapsulate cells within monodisperse SAPNS microspheres, which were subsequently used to transplant adherent, functional networks of DA neurons into the striatum of a 6-hydroxydopamine-lesioned PD mouse model. SAPNS microspheres significantly increased the in vivo survival of encapsulated neurons compared with neurons transplanted in suspension, and they enabled significant recovery in motor function compared with control lesioned mice using approximately an order of magnitude fewer neurons than have been previously needed to demonstrate behavioral recovery. These results indicate that such biomaterial scaffolds can be used as neuronal transplantation vehicles to successfully improve the outcome of cell replacement therapies for PD. Impact Statement Transplantation of dopaminergic (DA) neurons holds potential as a treatment for Parkinson's disease (PD), but low survival rates of transplanted neurons is a barrier to successfully improving motor function. In this study, we used hydrogel scaffolds to transplant DA neurons into PD model mice. The hydrogel scaffolds enhanced survival of the transplanted neurons compared with neurons that were transplanted in a conventional manner, and they also improved recovery of motor function by using significantly fewer neurons than have typically been transplanted to see functional benefits. This cell transplantation technology has the capability to improve the outcome of neuron transplantation therapies.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Neurônios Dopaminérgicos/transplante , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco
8.
Cell Stem Cell ; 24(6): 908-926.e8, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130512

RESUMO

Down syndrome (DS) is a common neurodevelopmental disorder, and cognitive defects in DS patients may arise from imbalances in excitatory and inhibitory neurotransmission. Understanding the mechanisms underlying such imbalances may provide opportunities for therapeutic intervention. Here, we show that human induced pluripotent stem cells (hiPSCs) derived from DS patients overproduce OLIG2+ ventral forebrain neural progenitors. As a result, DS hiPSC-derived cerebral organoids excessively produce specific subclasses of GABAergic interneurons and cause impaired recognition memory in neuronal chimeric mice. Increased OLIG2 expression in DS cells directly upregulates interneuron lineage-determining transcription factors. shRNA-mediated knockdown of OLIG2 largely reverses abnormal gene expression in early-stage DS neural progenitors, reduces interneuron production in DS organoids and chimeric mouse brains, and improves behavioral deficits in DS chimeric mice. Thus, altered OLIG2 expression may underlie neurodevelopmental abnormalities and cognitive defects in DS patients.


Assuntos
Síndrome de Down/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Interneurônios/fisiologia , Células-Tronco Neurais/fisiologia , Transtornos do Neurodesenvolvimento/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Prosencéfalo/patologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos/genética , Organoides , Fenótipo , RNA Interferente Pequeno/genética , Quimeras de Transplante
9.
Neuron ; 96(4): 897-909.e5, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29056294

RESUMO

Glucagon-like Peptide 1 (GLP-1)-expressing neurons in the hindbrain send robust projections to the paraventricular nucleus of the hypothalamus (PVN), which is involved in the regulation of food intake. Here, we describe that stimulation of GLP-1 afferent fibers within the PVN is sufficient to suppress food intake independent of glutamate release. We also show that GLP-1 receptor (GLP-1R) activation augments excitatory synaptic strength in PVN corticotropin-releasing hormone (CRH) neurons, with GLP-1R activation promoting a protein kinase A (PKA)-dependent signaling cascade leading to phosphorylation of serine S845 on GluA1 AMPA receptors and their trafficking to the plasma membrane. Finally, we show that postnatal depletion of GLP-1R in the PVN increases food intake and causes obesity. This study provides a comprehensive multi-level (circuit, synaptic, and molecular) explanation of how food intake behavior and body weight are regulated by endogenous central GLP-1. VIDEO ABSTRACT.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Ingestão de Alimentos/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptores de AMPA/fisiologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Fosforilação , Receptores de AMPA/metabolismo , Transdução de Sinais/fisiologia
10.
Genes Dev ; 31(6): 537-552, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404629

RESUMO

Rapid advances in genetics are linking mutations on genes to diseases at an exponential rate, yet characterizing the gene-mutation-cell-behavior relationships essential for precision medicine remains a daunting task. More than 350 mutations on small GTPase BRaf are associated with various tumors, and ∼40 mutations are associated with the neurodevelopmental disorder cardio-facio-cutaneous syndrome (CFC). We developed a fast cost-effective lentivirus-based rapid gene replacement method to interrogate the physiopathology of BRaf and ∼50 disease-linked BRaf mutants, including all CFC-linked mutants. Analysis of simultaneous multiple patch-clamp recordings from 6068 pairs of rat neurons with validation in additional mouse and human neurons and multiple learning tests from 1486 rats identified BRaf as the key missing signaling effector in the common synaptic NMDA-R-CaMKII-SynGap-Ras-BRaf-MEK-ERK transduction cascade. Moreover, the analysis creates the original big data unveiling three general features of BRaf signaling. This study establishes the first efficient procedure that permits large-scale functional analysis of human disease-linked mutations essential for precision medicine.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Transmissão Sináptica/genética , Animais , Células Cultivadas , Doença/genética , Feminino , Técnicas de Transferência de Genes , Humanos , Lentivirus/genética , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
11.
Sci Rep ; 6: 34341, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698409

RESUMO

Genetic variation in nicotinic receptor alpha 5 (CHRNA5) has been associated with increased risk of addiction-associated phenotypes in humans yet little is known the underlying neural basis. Induced pluripotent stem cells (iPSCs) were derived from donors homozygous for either the major (D398) or the minor (N398) allele of the nonsynonymous single nucleotide polymorphism (SNP), rs16969968, in CHRNA5. To understand the impact of these nicotinic receptor variants in humans, we differentiated these iPSCs to dopamine (DA) or glutamatergic neurons and then tested their functional properties and response to nicotine. Results show that N398 variant human DA neurons differentially express genes associated with ligand receptor interaction and synaptic function. While both variants exhibited physiological properties consistent with mature neuronal function, the N398 neuronal population responded more actively with an increased excitatory postsynaptic current response upon the application of nicotine in both DA and glutamatergic neurons. Glutamatergic N398 neurons responded to lower nicotine doses (0.1 µM) with greater frequency and amplitude but they also exhibited rapid desensitization, consistent with previous analyses of N398-associated nicotinic receptor function. This study offers a proof-of-principle for utilizing human neurons to study gene variants contribution to addiction.


Assuntos
Alelos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/genética , Células Cultivadas , Perfilação da Expressão Gênica , Variação Genética , Ácido Glutâmico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Neurônios/metabolismo
12.
Endocrinology ; 157(9): 3604-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27387482

RESUMO

CRH neurons in the hypothalamic paraventricular nucleus (PVN) play a central role in regulating the hypothalamus-pituitary-adrenal (HPA) axis and are directly influenced by 17ß-estradiol (E2). Although compelling evidence has suggested the existence of membrane-associated estrogen receptors (mERs) in hypothalamic and other central nervous system neurons, it remains unknown whether E2 impacts CRH neuronal excitability through this mechanism. The purpose of the current study is to examine the existence and function of mER signaling in PVN CRH neurons. Whole-cell recordings were made from CRH neurons identified by Alexa Fluor 594 labeling and post hoc immunostaining in ovariectomized female mice. E2 (100nM) rapidly suppressed the M-current (a voltage-dependent K(+) current) and potentiated glutamatergic excitatory postsynaptic currents. The putative Gq-coupled mER (Gq-mER) characterized in hypothalamic proopiomelanocortin neurons initiates a phospholipase C-protein kinase C-protein kinase A pathway; therefore, we examined the involvement of this pathway using selective inhibitors. Indeed, the ER antagonist ICI 182780 and inhibitors of Gq-phospholipase C-protein kinase C-protein kinase A blocked E2's actions, suggesting dependence on the Gq-mER. Furthermore, STX, a selective ligand for the Gq-mER, mimicked E2's actions. Finally, to examine the in vivo effect of Gq-mER activation, E2 or STX injection increased c-fos expression in CRH neurons in the PVN, suggesting CRH neuronal activation. This corresponded to an increase in plasma corticosterone. We conclude that the Gq-mER plays a critical role in the rapid regulation of CRH neuronal activity and the HPA axis. Our findings provide a potential underlying mechanism for E2's involvement in the pathophysiology of HPA-associated mood disorders.


Assuntos
Hormônio Liberador da Corticotropina , Estradiol/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Acrilamidas , Anilidas/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrilas , Propionatos , Proteína Quinase C-delta/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
13.
Nat Commun ; 7: 10862, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983594

RESUMO

Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼ 3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼ 38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance.


Assuntos
Encéfalo/citologia , Reprogramação Celular , Imageamento Tridimensional , Neurônios/citologia , Neurônios/transplante , Alicerces Teciduais/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Polímeros/química , Fatores de Transcrição/metabolismo
14.
ACS Biomater Sci Eng ; 2(6): 1030-1038, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32582837

RESUMO

While cell transplantation presents a potential strategy to treat the functional deficits of neurodegenerative diseases or central nervous system injuries, the poor survival rate of grafted cells in vivo is a major barrier to effective therapeutic treatment. In this study, we investigated the role of a peptide-based nanofibrous scaffold composed of the self-assembling peptide RADA16-I to support the reprogramming and maturation of human neurons in vitro and to transplant these neurons in vivo. The induced human neurons were generated via the single transcriptional factor transduction of induced pluripotent stem cells (iPSCs), which are a promising cell source for regenerative therapies. These neurons encapsulated within RADA16-I scaffolds displayed robust neurite outgrowth and demonstrated high levels of functional activity in vitro compared to that of 2-D controls, as determined by live cell calcium imaging. When evaluated in vivo as a transplantation vehicle for adherent, functional networks of neurons, monodisperse RADA16-I microspheres significantly increased survival (over 100-fold greater) compared to the conventional transplantation of unsupported neurons in suspension. The scaffold-encapsulated neurons integrated well in vivo within the injection site, extending neurites several hundred microns long into the host brain tissue. Overall, these results suggest that this biomaterial platform can be used to successfully improve the outcome of cell transplantation and neuro-regenerative therapies.

15.
Biochem J ; 458(3): 491-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24405299

RESUMO

Numerous studies have focused on the regulation of leptin signalling and the functions of leptin in energy homoeostasis; however, little is known about how leptin secretion is regulated. In the present study we studied leptin storage and secretion regulation in 3T3-L1 and primary adipocytes. Leptin is stored in membrane-bound vesicles that are localized predominantly in the ER (endoplasmic reticulum) and close to the plasma membrane of both 3T3-L1 and primary adipocytes. Insulin increases leptin secretion as early as 15 min without affecting the leptin mRNA level. Interestingly, treatment with the protein synthesis inhibitor cycloheximide and the ER-Golgi trafficking blocker Brefeldin A inhibit both basal and ISLS (insulin-stimulated leptin secretion), suggesting that insulin stimulates leptin secretion by up-regulating leptin synthesis and that leptin-containing vesicles go through the ER-Golgi route. The PI3K (phosphoinositide 3-kinase)/Akt, but not MAPK (mitogen-activated protein kinase), pathway is involved in ISLS in vitro and in vivo. Although Ca2+ triggers synaptic vesicle and secretory granule exocytosis, Ca2+ influx alone is not sufficient to induce leptin secretion. Remarkably, Ca2+ is required for ISLS possibly due to its involvement in insulin-stimulated Akt phosphorylation. We conclude that insulin stimulates leptin release through the PI3K/Akt pathway and that Ca2+ is required for robust Akt phosphorylation and leptin secretion.


Assuntos
Cálcio/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Adipócitos Brancos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Complexo de Golgi/metabolismo , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transporte Proteico , Vesículas Secretórias/metabolismo , Transdução de Sinais
16.
J Neurochem ; 124(4): 478-89, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23173741

RESUMO

Heterozygosity for missense mutations in Seipin, namely N88S and S90L, leads to a broad spectrum of motor neuropathy, while a number of loss-of-function mutations in Seipin are associated with the Berardinelli-Seip congenital generalized lipodystrophy type 2 (CGL2, BSCL2), a condition that is characterized by severe lipoatrophy, insulin resistance, and intellectual impairment. The mechanisms by which Seipin mutations lead to motor neuropathy, lipodystrophy, and insulin resistance, and the role Seipin plays in central nervous system (CNS) remain unknown. The goal of this study is to understand the functions of Seipin in the CNS using a loss-of-function approach, i.e. by knockdown (KD) of Seipin gene expression. Excitatory post-synaptic currents (EPSCs) were impaired in Seipin-KD neurons, while the inhibitory post-synaptic currents (IPSCs) remained unaffected. Expression of a shRNA-resistant human Seipin rescued the impairment of EPSC produced by Seipin KD. Furthermore, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced whole-cell currents were significantly reduced in Seipin KD neurons, which could be rescued by expression of a shRNA-resistant human Seipin. Fluorescent imaging and biochemical studies revealed reduced level of surface AMPA receptors, while no obvious ultrastructural changes in the pre-synapse were found. These data suggest that Seipin regulates excitatory synaptic function through a post-synaptic mechanism.


Assuntos
Córtex Cerebral/citologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Mutação de Sentido Incorreto/genética , Neurônios/fisiologia , Transmissão Sináptica/genética , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Biotinilação , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Subunidades gama da Proteína de Ligação ao GTP , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Imunoprecipitação , Lipodistrofia Generalizada Congênita , Camundongos , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Sinaptofisina/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
17.
EMBO J ; 32(1): 159-71, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23188083

RESUMO

Among SNARE proteins mediating synaptic vesicle fusion, syntaxin-1 uniquely includes an N-terminal peptide ('N-peptide') that binds to Munc18-1, and a large, conserved H(abc)-domain that also binds to Munc18-1. Previous in vitro studies suggested that the syntaxin-1 N-peptide is functionally important, whereas the syntaxin-1 H(abc)-domain is not, but limited information is available about the in vivo functions of these syntaxin-1 domains. Using rescue experiments in cultured syntaxin-deficient neurons, we now show that the N-peptide and the H(abc)-domain of syntaxin-1 perform distinct and independent roles in synaptic vesicle fusion. Specifically, we found that the N-peptide is essential for vesicle fusion as such, whereas the H(abc)-domain regulates this fusion, in part by forming the closed syntaxin-1 conformation. Moreover, we observed that deletion of the H(abc)-domain but not deletion of the N-peptide caused a loss of Munc18-1 which results in a decrease in the readily releasable pool of vesicles at a synapse, suggesting that Munc18 binding to the H(abc)-domain stabilizes Munc18-1. Thus, the N-terminal syntaxin-1 domains mediate different functions in synaptic vesicle fusion, probably via formation of distinct Munc18/SNARE-protein complexes.


Assuntos
Proteínas Munc18/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Sinapses/metabolismo , Sintaxina 1/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Silenciamento de Genes , Fusão de Membrana , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Sinapses/genética , Transmissão Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genética
18.
J Neurosci ; 30(35): 11838-47, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20810903

RESUMO

Although the calcium/calmodulin-activated phosphatase calcineurin may dephosphorylate many endocytic proteins, it is not considered a key molecule in mediating the major forms of endocytosis at synapses-slow, clathrin-dependent and the rapid, clathrin-independent endocytosis. Here we studied the role of calcineurin in endocytosis by reducing calcium influx, inhibiting calmodulin with pharmacological blockers and knockdown of calmodulin, and by inhibiting calcineurin with pharmacological blockers and knock-out of calcineurin. These manipulations significantly inhibited both rapid and slow endocytosis at the large calyx-type synapse in 7- to 10-d-old rats and mice, and slow, clathrin-dependent endocytosis at the conventional cultured hippocampal synapse of rats and mice. These results suggest that calcium influx during nerve firing activates calcium/calmodulin-dependent calcineurin, which controls the speed of both rapid and slow endocytosis at synapses by dephosphorylating endocytic proteins. The calcium/calmodulin/calcineurin signaling pathway may underlie regulation of endocytosis by nerve activity and calcium as reported at many synapses over the last several decades.


Assuntos
Calcineurina/fisiologia , Endocitose/fisiologia , Hipocampo/fisiologia , Sinapses/fisiologia , Animais , Inibidores de Calcineurina , Cálcio/fisiologia , Calmodulina/fisiologia , Endocitose/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Humanos , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Células PC12 , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA