Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 433(2): 166725, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33245961

RESUMO

The unprecedented scale of the ongoing COVID-19 pandemic has catalyzed an intense effort of the global scientific community to unravel different aspects of the disease in a short time. One of the crucial aspects of these developments is the determination of more than three hundred experimental structures of SARS-CoV-2 proteins in the last few months. These include structures of viral non-structural, structural, and accessory proteins and their complexes determined by either X-ray diffraction or cryo-electron microscopy. These structures elucidate the intricate working of different components of the viral machinery at the atomic level during different steps of the viral life cycle, including attachment to the host cell, viral genome replication and transcription, and genome packaging and assembly of the virion. Some of these proteins are also potential targets for drug development against the disease. In this review, we discuss important structural features of different SARS-CoV-2 proteins with their function, and their potential as a target for therapeutic interventions.


Assuntos
COVID-19/virologia , SARS-CoV-2/química , SARS-CoV-2/genética , Proteínas Virais/química , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Microscopia Crioeletrônica , Genoma Viral , Humanos , Estágios do Ciclo de Vida/genética , Modelos Moleculares , Conformação Proteica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Replicação Viral
2.
Antioxid Redox Signal ; 28(4): 296-310, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28899103

RESUMO

AIMS: Living cells employ thioredoxin and glutaredoxin disulfide oxido-reductases to protect thiol groups in intracellular proteins. FrnE protein of Deinococcus radiodurans (drFrnE) is a disulfide oxido-reductase that is induced in response to Cd2+ exposure and is involved in cadmium and radiation tolerance. The aim of this study is to probe structure, function, and cellular localization of FrnE class of proteins. RESULTS: Here, we show drFrnE as a novel cytoplasmic oxido-reductase that could be functional in eubacteria under conditions where thioredoxin/glutaredoxin systems are inhibited or absent. Crystal structure analysis of drFrnE reveals thioredoxin fold with an alpha helical insertion domain and a unique, flexible, and functionally important C-terminal tail. The C-tail harbors a novel 239-CX4C-244 motif that interacts with the active site 22-CXXC-25 motif. Crystal structures with different active site redox states, including mixed disulfide (Cys22-Cys244), are reported here. The biochemical data show that 239-CX4C-244 motif channels electrons to the active site cysteines. drFrnE is more stable in the oxidized form, compared with the reduced form, supporting its role as a disulfide reductase. Using bioinformatics analysis and fluorescence microscopy, we show cytoplasmic localization of drFrnE. We have found "true" orthologs of drFrnE in several eubacterial phyla and, interestingly, all these groups apparently lack a functional glutaredoxin system. Innovation and Conclusion: We show that drFrnE represents a new class of hitherto unknown intracellular oxido-reductases that are abundantly present in eubacteria. Unlike other well-known oxido-reductases, FrnE harbors an additional dithiol motif that acts as a conduit to channel electrons to the active site during catalytic turnover. Antioxid. Redox Signal. 28, 296-310.


Assuntos
Citoplasma/enzimologia , Deinococcus/química , Proteína Dissulfeto Redutase (Glutationa)/química , Motivos de Aminoácidos/genética , Domínio Catalítico , Cristalografia por Raios X , Citoplasma/química , Deinococcus/enzimologia , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Oxirredução , Estresse Oxidativo , Proteína Dissulfeto Redutase (Glutationa)/genética , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
3.
Biochem Biophys Res Commun ; 476(4): 371-378, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27237970

RESUMO

Chironomus ramosus is known to tolerate high doses of gamma radiation exposure. Larvae of this insect possess more than 95% of hemoglobin (Hb) in its circulatory hemolymph. This is a comparative study to see effect of gamma radiation on Hb of Chironomus and humans, two evolutionarily diverse organisms one having extracellular and the other intracellular Hb respectively. Stability and integrity of Chironomus and human Hb to gamma radiation was compared using biophysical techniques like Dynamic Light Scattering (DLS), UV-visible spectroscopy, fluorescence spectrometry and CD spectroscopy after exposure of whole larvae, larval hemolymph, human peripheral blood, purified Chironomus and human Hb. Sequence- and structure-based bioinformatics methods were used to analyze the sequence and structural similarities or differences in the heme pockets of respective Hbs. Resistivity of Chironomus Hb to gamma radiation is remarkably higher than human Hb. Human Hb exhibited loss of heme iron at a relatively low dose of gamma radiation exposure as compared to Chironomus Hb. Unlike human Hb, the heme pocket of Chironomus Hb is rich in aromatic amino acids. Higher hydophobicity around heme pocket confers stability of Chironomus Hb compared to human Hb. Previously reported gamma radiation tolerance of Chironomus can be largely attributed to its evolutionarily ancient form of extracellular Hb as evident from the present study.


Assuntos
Chironomidae/efeitos da radiação , Hemoglobinas/química , Hemoglobinas/efeitos da radiação , Animais , Sangue/efeitos da radiação , Dicroísmo Circular , Relação Dose-Resposta à Radiação , Difusão Dinâmica da Luz , Raios gama , Heme , Hemolinfa/efeitos da radiação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/química , Proteínas de Insetos/efeitos da radiação , Larva/efeitos da radiação , Conformação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
4.
Int J Food Sci ; 2014: 935129, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26904655

RESUMO

Honey brands commonly available in Indian market were characterized for their rheological and thermal properties. Viscosity of all the honey samples belonging to different commercial brands was found to decrease with increase in temperature (5-40°C) and their sensitivity towards temperature varied significantly as explained by calculating activation energy based on Arrhenius model and ranged from 54.0 to 89.0 kJ/mol. However, shear rate was not found to alter the viscosity of honey indicating their Newtonian character and the shear stress varied linearly with shear rate for all honey samples. Honey is known to contain pathogenic microbial spores and in our earlier study gamma radiation was found to be effective in achieving microbial decontamination of honey. The effect of gamma radiation (5-15 kGy) on rheological properties of honey was assessed, and it was found to remain unchanged upon radiation treatment. The glass transition temperatures (T g ) of these honey analyzed by differential scanning calorimetry varied from -44.1 to -54.1°C and remained unchanged upon gamma radiation treatment. The results provide information about some key physical properties of commercial Indian honey. Radiation treatment which is useful for ensuring microbial safety of honey does not alter these properties.

5.
Colloids Surf B Biointerfaces ; 103: 267-74, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201747

RESUMO

The effects of electrostatic interaction between the hen egg white lysozyme (HEWL) and the functionalized iron oxide nanoparticles (IONPs) have been investigated using several techniques, e.g., CD, DSC, ζ-potential, UV-visible spectroscopy, DLS, TEM. Nanoparticles (IONPs) were functionalized with three hydrophilic ligands, viz., poly(ethylene glycol) (PEG), trisodium citrate (TSC) and sodium triphosphate (STP); where both TSC and STP contain Na(+) counter ions. It has been observed that the secondary structure of HEWL was not affected by PEG functionalized IONPs, but was partially and almost completely perturbed by TSC and STP functionalized IONPs, respectively. The perturbation of the secondary structure was irreversible. We have predicted an interaction model to explain the origin of perturbation of HEWL structure. We have also investigated the stability of nanoparticles dispersions after interaction with HEWL and used the DLVO theory to explain results.


Assuntos
Compostos Férricos/metabolismo , Modelos Químicos , Muramidase/metabolismo , Nanopartículas/química , Desnaturação Proteica , Eletricidade Estática , Animais , Varredura Diferencial de Calorimetria , Galinhas , Dicroísmo Circular , Íons , Muramidase/química , Nanopartículas/ultraestrutura , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Fatores de Tempo , Temperatura de Transição
6.
Mol Pharm ; 6(2): 345-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19265445

RESUMO

The objective of this study was to investigate the in vitro and in vivo effects of blank chitosan nanoparticles on various molecular markers such as nitric oxide (NO) production, IL-6 gene expression, and lymphocyte proliferation involved in the wound healing process. In addition, the membrane effects of chitosan nanoparticles were evaluated using phospholipid vesicles as a model membrane. Peripheral blood mononuclear cells (PBMC) were treated with blank chitosan nanoparticles, and the effect on NO production, IL-6 gene expression, and lymphocyte proliferation was evaluated. It was observed that IL-6 gene expression was not induced at any of the doses used; however, a statistically significant dose-dependent increase in NO production was observed at doses above 68.18 microg/mL equivalent to chitosan. Furthermore, chitosan nanoparticles showed a statistically significant and dose-dependent lymphocyte proliferation as compared to the control (P < 0.05). It was observed that blank chitosan nanoparticles resulted in strong membrane perturbation when evaluated by differential scanning calorimetry studies. The in vivo effects of the blank chitosan nanoparticles were evaluated using a wound healing model. Blank chitosan nanoparticles showed significantly higher NO production in vivo as compared to the control. Overall, the study clearly indicates the immunoactivating nature of chitosan nanoparticles and their strong membrane interactive potential.


Assuntos
Materiais Biocompatíveis/metabolismo , Membrana Celular/metabolismo , Quitosana/metabolismo , Linfócitos/metabolismo , Nanopartículas , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animais , Células Cultivadas , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Linfócitos/imunologia , Óxido Nítrico/metabolismo , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA